1. | \(\dfrac{1}{2\pi}\sqrt{\dfrac{L}{C}}\) | 2. | \(\sqrt{\dfrac{L}{C}}\) |
3. | \(2\pi\sqrt{\dfrac{L}{C}}\) | 4. | \(2\sqrt{\dfrac{L}{C}}\) |
Assertion (A): | Faraday's law of electromagnetic induction is a consequence of Biot-Savart's law. |
Reason (R): | Currents cause magnetic fields and interact with magnetic flux. |
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
Assertion (A): | Faraday's law of electromagnetic induction is not consistent with the law of conservation of energy. |
Reason (R): | Lenz's law is consistent with energy conservation. |
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
1. | \(5\) V | 2. | \(0.5\) V |
3. | \(0.05\) V | 4. | \(5\times10^{-4}\) V |
Statement I: | The magnetic field due to a very long current-carrying solenoid, at its centre, is inversely proportional to the radius of the solenoid, other things remaining constant. |
Statement II: | \(I\) is directly proportional to \(I^2.\) | The magnetic energy stored in a solenoid carrying a current
1. | Statement I is incorrect and Statement II is correct. |
2. | Both Statement I and Statement II are correct. |
3. | Both Statement I and Statement II are incorrect. |
4. | Statement I is correct and Statement II is incorrect. |
List-I | List-II | ||
\((\mathrm{A})\) | \(\times\) current | inductance\((\mathrm{I})\) | V |
\((\mathrm{B})\) | \(\times\) capacitance | frequency\((\mathrm{II})\) | Wb |
\((\mathrm{C})\) | \(\times\) magnetic flux | frequency\((\mathrm{III})\) | \(\Omega^{-1}\) |
\((\mathrm{D})\) | electric flux | \(\mathrm{IV}\) | V-m |
1. | \(\mathrm{A\text-I, B\text{-}IV, C\text-II, D\text- III}\) |
2. | \(\mathrm{A\text-II, B\text{-}III, C\text-I, D\text- IV}\) |
3. | \(\mathrm{A\text-III, B\text{-}I, C\text-II, D\text- IV}\) |
4. | \(\mathrm{A\text-III, B\text{-}IV, C\text-II, D\text- I}\) |
Statement I: | A steady magnetic field can be produced by a steady current. |
Statement II: | A steady current can be produced in a circuit by a changing magnetic field. |
1. | Statement I is incorrect and Statement II is correct. |
2. | Both Statement I and Statement II are correct. |
3. | Both Statement I and Statement II are incorrect. |
4. | Statement I is correct and Statement II is incorrect. |