Select Question Set:
filter
A light beam traveling along the \(x\text-\)axis with a planar wavefront is incident on a medium of thickness \(t\). In the region, where light is falling, the refractive index can be taken to be varying such that \(\dfrac{dn}{dy}>0.\) The light beam on the other side of the medium will emerge:
1. parallel to the \(x\text-\)axis
2. bending downward
3. bending upward
4. split into two or more beams
Subtopic:  Huygens' Principle |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Polarized light incident on a polaroid. Let \(I_{0}\) be the intensity of light transmitted by this polaroid. Now, a very large number (say \(N\)) of polaroids are placed in a row with their axes displaced through a small angle \(\theta\) successively. If the last polaroid is crossed to the first one, the intensity of light transmitted by the last polaroid is about:

1. Zero 2. \(\dfrac{I_{0}}{2}\)
3. \(I_{0}\) 4. \(\dfrac{I_{0}}{N}\)
Subtopic:  Polarization of Light |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In Young's double-slit experiment conducted with the light of an unknown wavelength, it is found that the fringe width is twice the separation between the slits, \(d,\) which is \(0.5~\text{mm}.\) The slit to screen distance is \(1~\text{m}.\) The wavelength of light used is:
1. \(125~\text{nm}\)
2. \(250~\text{nm}\)
3. \(500~\text{nm}\)
4. \(1000~\text{nm}\)
Subtopic:  Young's Double Slit Experiment |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

White light is used to illuminate the double slit in Young's double-slit experiment. Which of the following is/are true? 
I. The central fringe will be white.
II. Closest bright fringe to the central fringe will be a violet fringe.
III. There will not be any dark fringe.
1. I only 
2. I, II
3. I, III
4. I, II, III
Subtopic:  Young's Double Slit Experiment |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Find the minimum order of a green fringe (\(\lambda = 500\) nm) which overlaps a dark fringe of violet (\(\lambda = 400\) nm) in a Young's double-slit experiment conducted with these two colours.
1. \(4\)
2. \(2\) 
3. \(5\)
4. \(2.5\)
Subtopic:  Young's Double Slit Experiment |
 55%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A double-slit experiment is performed with one slit four times as wide as the other. Assuming that the amplitude of light coming from a slit is proportional to the slit-width, the ratio of the maximum and minimum intensities on the screen, \(\dfrac{I_{max}}{I_{min}}=\)
 
1. \(\dfrac{5}{3}\) 2. \(\dfrac{3}{1}\)
3. \(\dfrac{25}{9}\) 4. \(\dfrac{9}{1}\)
Subtopic:  Young's Double Slit Experiment |
 60%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Young's double-slit experiment is conducted with the light of wavelength \(700~\text{nm}\). A thin strip of a glass of refractive index \(\mu=1.7\) is placed in front of one of the slits and the fringe system is displaced by \(10\) fringes. The thickness of the glass strip is:
1. \(10~\mu \text{m}\) 2. \(1~\mu \text{m}\)
3. \(17~\mu \text{m}\) 4. \(1.7~\mu \text{m}\)
Subtopic:  Young's Double Slit Experiment |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The width of the central maximum of the diffraction pattern of a single slit of width \(1\) mm equals the width of the slit itself, when the screen is \(1\) m away from it. The wavelength of light used equals:
1. \(250\) nm  2. \(500\) nm 
3. \(1000\) nm  4. \(2000\) nm
Subtopic:  Diffraction |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Plane waves of light of wavelength \(\lambda\) are incident onto a convex lens, and the beam is brought to a focus. A plane slab of thickness \(t\) having refractive indices \(\mu_1,~\mu_2\) in the upper and lower halves is placed parallel to the incoming wavefronts. The phase difference between the wavefronts at the focus, coming from the upper and lower halves of the slab is:
1. \(\dfrac{2 \pi}{\lambda}\left[\left(\mu_{1}-1\right) t+\left(\mu_{2}-1\right) t\right]\)
2. \(\dfrac{2 \pi}{\lambda}\left(\mu_{1}-\mu_{2}\right) t\)
3. \(\dfrac{2 \pi}{\lambda}\left(\dfrac{t}{\mu_{1}}-\dfrac{t}{\mu_{2}}\right)\)
4. \(\dfrac{2 \pi}{\lambda}\left(\dfrac{t}{\mu_{1}}+\dfrac{t}{\mu_{2}}\right)\)
Subtopic:  Huygens' Principle |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Light of wavelength \(\lambda\) falls perpendicularly onto a single slit of width \(d\). A diffraction maximum is formed at \(P\) on a faraway screen placed parallel to plane of the slit. The first diffraction minimum is formed at \(Q,\) as shown on the screen. Let \(C\) be a 'point' so that it divides the slit \(AB\) in the ratio \(\dfrac{AC}{CB}=\dfrac12,\) i.e. \(AC\) represents the upper \(\dfrac13^{rd}\) of the slit. The total amplitude of the oscillation arriving from \(AC\) at \(Q\) is \(A_1\) and from \(CB\) at \(Q\) is \(A_2\).
Then:

1. \(2 A_{1}=A_{2}\)
2. \(A_{1}=2 A_{2}\)
3. \(\sqrt{2} A_{1}=A_{2}\)
4. \(A_{1}=A_{2}\)
Subtopic:  Diffraction |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Select Question Set:
filter