1. | \(-3.4~\text{eV}\) | 2. | \(-6.8~\text{eV}\) |
3. | \(-10.2~\text{eV}\) | 4. | \(-13.6~\text{eV}\) |
1. | \(n=2\) state of \(\mathrm{He}^{+}\) \(\left(Z=2\right)\) ion |
2. | \(n=4\) state of \(\mathrm{He}^{+}\) \(\left(Z=2\right)\) ion |
3. | \(n=2\) state of \(\mathrm{Be}^{3+}\)\(\left(Z=4\right)\) ion |
4. | \(n=3\) state of \(\mathrm{Li}^{2+}\) \(\left(Z=3\right)\) ion |
1. | the same phase. |
2. | the same energy. |
3. | the same direction. |
4. | the same phase, energy, and direction. |
1. | 2 possible energy values. |
2. | 3 possible energy values. |
3. | 4 possible energy values. |
4. | 5 possible energy values. |
Assertion (A): | \(n.\) | The magnetic moment of a hydrogen-like atom is higher when it is in a state of higher quantum number
Reason (R): | \(n.\) | The magnetic moment of hydrogen-like atom, as calculated from Bohr's theory, is directly proportional to the principal quantum number
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
1. | \(\dfrac he\) | 2. | \(\dfrac h{2e}\) |
3. | \(\dfrac {2h}e\) | 4. | \(\dfrac h{2\pi e}\) |
1. | \(4\) | 2. | \(2\) |
3. | \(\dfrac12\) | 4. | \(\dfrac14\) |