1. | \(f_o = \dfrac{10^3 + 10^5}{2}\) Hz |
2. | \(f_o > \dfrac{10^3 + 10^5}{2}\) Hz |
3. | \(f_o < \dfrac{10^3 + 10^5}{2}\) Hz |
4. | \(f_o = {10^3 + 10^5}\) Hz |
1. | \(R_L = 100\sqrt 2~\Omega\) | 2. | \(R_L = \dfrac{100}{\sqrt 2}~\Omega \) |
3. | \(R_L = 100~\Omega\) | 4. | \(R_L = 200~\Omega\) |
1. | \(\dfrac{L}{C}=R^2 \) | 2. | \(\dfrac{L}{C}=2R^2\) |
3. | \(\dfrac{L}{C}=3R^2\) | 4. | \(\dfrac{L}{C}=\dfrac13R^2\) |
(A) | ![]() |
(B) | ![]() |
(C) | ![]() |
In the given scenario, the voltage, \(V_2 > V_1,\) and no current flow through the source on the left. The phase difference between the two sources is \(\phi.\)
1. | \(R\sin\phi= \dfrac{1}{\omega C}\) | 2. | \(R\cos\phi= \dfrac{1}{\omega C}\) |
3. | \(R\tan\phi= \dfrac{1}{\omega C}\) | 4. | \(R\cot\phi= \dfrac{1}{\omega C}\) |
1. | \(\dfrac{V_r}{3}\) | 2. | \(\dfrac{2V_r}{3}\) |
3. | \(\dfrac{V_r}{2}\) | 4. | \(V_r\) |
1. | zero | 2. | \(\sqrt 2 V_r \) |
3. | \(2 V_r\) | 4. | \(\dfrac{V_r}{\sqrt 2}\) |