1. | \(\dfrac{2BR}{\lambda}\) | 2. | \(\dfrac{BR}{\lambda}\) |
3. | \(\dfrac{BR}{2\lambda}\) | 4. | zero |
1. | \(Bv^2t\) | 2. | \(2Bv^2t\) |
3. | \(\dfrac{\sqrt3}{2}Bv^2t\) | 4. | \(\dfrac{2}{\sqrt3}Bv^2t\) |
1. | is zero | 2. | is constant |
3. | increases with time | 4. | decreases with time |
Assertion (A): | \(\dfrac12B\omega L.\) | The average induced electric field within the wire has a magnitude of
Reason (R): | \(\dfrac12B\omega L^2.\) | The induced electric field is the motional EMF per unit length, and the motional EMF is
1. | (A) is True but (R) is False. |
2. | (A) is False but (R) is True. |
3. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
4. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
1. | \(n\omega BA\). | constant, of magnitude
2. | \(t\), of magnitude \(n\omega^2BAt\). | increasing with time
3. | \(t\), of magnitude \(\dfrac{nBA}{t}\). | decreasing with time
4. | \(t\), of amplitude \(n\omega BA\). | sinusoidal with time