1. | \(2 \pi \sqrt{\dfrac{m}{k}} \) | 2. | \(\pi \sqrt{\dfrac{m}{k}} \) |
3. | \(4\pi \sqrt{\dfrac{m}{k}}\) | 4. | \(\dfrac{\pi}{2} \sqrt{\dfrac{m}{k}}\) |
The energy of the block is \(E\), and the plane is smooth, the wall at the end \(B\) is smooth. Collisions with walls are elastic. The distance \(AB=l\), the spring is ideal and the spring constant is \(k\). The time period of the motion is:
1. | \(2\pi\sqrt{\dfrac{m}{k}}\) |
2. | \(\pi\sqrt{\dfrac{m}{k}}+l\sqrt{\dfrac{2m}{E}}\) |
3. | \(2\pi\sqrt{\dfrac{m}{k}}+2l\sqrt{\dfrac{2m}{E}}\) |
4. | \(\pi\sqrt{\dfrac{m}{k}}+l\sqrt{\dfrac{m}{2E}}\) |
1. | the amplitude increases. |
2. | the amplitude decreases. |
3. | the frequency increases. |
4. | the frequency decreases. |
1. | \(T_{AB}=\dfrac{3}{2}~T_A\) | 2. | \(T_{AB}=\dfrac{\sqrt5}{2}~T_A\) |
3. | \(T_{AB}=\dfrac{1}{2}~T_A\) | 4. | \(T_{AB}=\dfrac{2}{3}~T_A\) |
1. | \(t\) increases. |
2. | \(t\) decreases. |
3. | \(t\) remains unchanged. |
4. | \(t\) cannot be determined due to insufficient information. | the effect on
1. | \(\sqrt{\dfrac{2k}{3m}}\) | 2. | \(\sqrt{\dfrac{3k}{2m}}\) |
3. | \(\sqrt{\dfrac{3k}{m}}\) | 4. | \(\sqrt{\dfrac{k}{3m}}\) |
1. | \(0\) | 2. | \(2k\) |
3. | \(\dfrac k2\) | 4. | infinity |
1. | \(2\pi{\Large\sqrt\frac{l}{g}}+2\pi{\Large\sqrt\frac{m}{k}} \) | 2. | \(\pi{\Large\sqrt\frac{l}{g}}+\pi{\Large\sqrt\frac{m}{k}}\) |
3. | \({\Large\sqrt\frac{g}{l}}+{\Large\sqrt\frac{k}{m}}\) | 4. | \(\Large\frac{1}{2\pi}\sqrt{\frac gl}+\frac{1}{2\pi}\sqrt\frac{k}{m}\) |