During the electrolysis of a highly concentrated H2SO4 solution, which is released at the anode?
1. H2
2. O2
3. S2O82–
4. Both (1) & (3)
The electrode potential of Cu electrode dipped in 0.025 M CuSO4 solution at 298 K is:
(standard reduction potential of Cu = 0.34 V)
1. 0.047 V
2. 0.293 V
3. 0.35 V
4. 0.387 V
The number of Faradays (F) required to produce 20 g of calcium from molten CaCl2 (Atomic mass of Ca = 40 g mol–1) is:
1. 2
2. 3
3. 4
4. 1
The unit of specific conductance is:
1. | ohm-1 cm-1 | 2. | ohm cm |
3. | ohm cm-1 | 4. | ohm-1 cm |
For the cell, Ti/Ti+(0.001M)||Cu2+(0.1M)|Cu, at
25 C is 0.83 V. Ecell can be increased :
1. By increasing [Cu2+]
2. By increasing [Ti+]
3. By decreasing [Cu2+]
4. None of the above.
The specific conductance of a 0.1 M KCl solution at 23 is 0.012 .
The resistance of the cell containing the solution at the same temperature was found to be 55 . The cell constant will be:
1. 0.142 cm–1
2. 0.66 cm–1
3. 0.918 cm–1
4. 1.12 cm–1
Molten sodium chloride conducts electricity due to the presence of:
1. Free ions.
2. Free molecules.
3. Free electrons.
4. Atoms of sodium and chlorine.
Limiting molar conductivities, for the given solutions, are :
From the data given above, it can be concluded that \(\lambda_m^0 \) in (\(S\ cm^2\ mol^{-1}\)) for CH3COOH will be :
1. \(\mathrm{x-y+2z}\)
2. \(\mathrm{x+y+z}\)
3. \(\mathrm{x-y+z}\)
4. \(\mathrm{{(x-y) \over 2}+z}\)
The electrode potential for Mg electrode varies according to the equation
\(E_{Mg^{2+}/Mg}\ = \ E_{Mg^{2+}/Mg}^{o} \ - \ \frac{0.059}{2}log\frac{1}{[Mg^{2+}]}\)
The graph of EMg2+ / Mg vs log [Mg2+] among the following is:
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
Use the data given above to find out the most stable ion in its reduced form.
1. | Cl- | 2. | Cr3+ |
3. | Cr | 4. | Mn2+ |