The rms speed of oxygen atoms is v. If the temperature is halved and the oxygen atoms combine to form oxygen molecules, then the rms speed will be:
1.
2.
3. 2v
4.
The mean free path of gas molecules depends on:
(\(d=\) molecular diameter)
1. \(d\)
2. \(d^2\)
3. \(d^{-2}\)
4. \(d^{-1}\)
Two thermally insulated vessels \(1\) and \(2\) are filled with air at temperatures \(\mathrm{T_1},\) \(\mathrm{T_2},\) volume \(\mathrm{V_1},\) \(\mathrm{V_2}\) and pressure \(\mathrm{P_1},\) \(\mathrm{P_2}\) respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be:
1. | \(T_1+T_2\) | 2. | \(\dfrac{T_1+T_2}{2}\) |
3. | \(\dfrac{T_1T_2(P_1V_1+P_2V_2)}{P_1V_1T_2+P_2V_2T_1}\) | 4. | \(\dfrac{T_1T_2(P_1V_1+P_2V_2)}{P_1V_1T_1+P_2V_2T_2}\) |
If the mean free path of atoms is doubled, then the pressure of the gas will become:
1. \(\frac{P}{4}\)
2. \(\frac{P}{2}\)
3. \(\frac{P}{8}\)
4. \(P\)
The pressure in a diatomic gas increases from to , when its volume is increased from . The increase in internal energy will be:
1.
2.
3.
4.
The figure shows a process for a gas in which pressure (P) and volume (V) of the gas change. If and are the molar heat capacities of the gas during the processes AB and BC respectively, then:
1.
2.
3.
4.
The change in the internal energy of an ideal gas does not depend on?
1. | Number of moles |
2. | Change in temperature |
3. | Specific heat at constant pressure \(C_p\) of the gas |
4. | Specific heat at constant volume \(C_v\) of the gas |
The translational kinetic energy of \(n\) moles of a diatomic gas at absolute temperature \(T\) is given by:
1. \(\frac{5}{2}nRT\)
2. \(\frac{3}{2}nRT\)
3. \(5nRT\)
4. \(\frac{7}{2}nRT\)
Which of the following graphs, shows the variation of the mean kinetic energy \(E\) of an ideal gas molecule with temperature
1. | 2. | ||
3. | 4. |
1. | \(3:1\) | 2. | \(9:1\) |
3. | \(1:1\) | 4. | \(1:4\) |