1. | \(1000~\text{J}\) | 2. | zero |
3. | \(-2000~\text{J}\) | 4. | \(2000~\text{J}\) |
The standard enthalpy of vaporization for water at 100 oC is 40.66 kJ mol–1. The internal energy of vaporization of water at 100 oC (in kJ mol–1) is:
(Assume water vapour behaves like an ideal gas.)
1. +37.56
2. –43.76
3. +43.76
4. +40.66
1. | \(275~\text{K}\) | 2. | \(325~\text{K}\) |
3. | \(250~\text{K}\) | 4. | \(380~\text{K}\) |
A refrigerator works between and . It is required to remove 600 calories of heat every second in order to keep the temperature of the refrigerated space constant. The power is
1. 2.365 W
2. 23.65 W
3. 236.5 W
4. 2365 W
Under the isothermal condition, a gas at \(300 \mathrm{~K}\) expands from \(0.1 \mathrm{~L}\) to \(0.25 \mathrm{~L}\) against a constant external pressure of 2 bar. The work done by the gas is:
1. \(30 ~\mathrm {J} \)
2. \(-30 ~\mathrm{J} \)
3. \(5~ \mathrm{kJ}\)
4. \(25~ \mathrm{J}\)
1. | \(64P\) | 2. | \(32P\) |
3. | \(\frac{P}{64}\) | 4. | \(16P\) |
The figure below shows two paths that may be taken by gas to go from state \(A\) to state \(C.\)
In process \(AB,\) \(400~\text{J}\) of heat is added to the system, and in process \(BC,\) \(100~\text{J}\) of heat is added to the system. The heat absorbed by the system in the process \(AC\) will be:
1. \(380~\text{J}\)
2. \(500~\text{J}\)
3. \(460~\text{J}\)
4. \(300~\text{J}\)
An ideal gas is compressed to half its initial volume using several processes. Which of the processes results in the maximum work done on the gas?
1. adiabatic
2. isobaric
3. isochoric
4. isothermal
The pressure of a monoatomic gas increases linearly from \(4\times 10^5~\text{N/m}^2\) to \(8\times 10^5~\text{N/m}^2\) when its volume increases from \(0.2 ~\text m^3\) to \(0.5 ~\text m^3.\) The work done by the gas is:
1. \(2 . 8 \times10^{5}~\text J\)
2. \(1 . 8 \times10^{6}~\text J\)
3. \(1 . 8 \times10^{5}~\text J\)
4. \(1 . 8 \times10^{2}~\text J\)