Select Question Set:
filter

A force, \(F=-Kx^{n}\) acts on a particle, where \(K\) is a positive constant. The value of \(n\) for which motion can be oscillatory is:
1. \(4\)
2. \(6\)
3. \(3\)
4. \(2\)

Subtopic:  Simple Harmonic Motion |
 72%
Please attempt this question first.
Hints
Please attempt this question first.

When a periodic force \(\vec{F_1}\) acts on a particle, the particle oscillates according to the equation \(x=A\sin\omega t\). Under the effect of another periodic force \(\vec{F_2}\), the particle oscillates according to the equation \(y=B\sin(\omega t+\frac{\pi}{2})\). The amplitude of oscillation when the force (\(\vec{F_1}+\vec{F_2}\)) acts are:

1. \(A+B\) 2. \(\sqrt{A^2+B^2}\)
3. \(\large\frac{\sqrt{A^2+B^2}}{2}\) 4. \(\sqrt{AB}\)
Subtopic:  Simple Harmonic Motion |
 91%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The total mechanical energy of a linear harmonic oscillator is \(600~\text J.\) At the mean position, its potential energy is \(100~\text J.\) The minimum potential energy of the oscillator is: 
1. \(50~\text J\)
2. \(500~\text J\)
3. \(0\) 
4. \(100~\text J\)

Subtopic:  Energy of SHM |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Simple harmonic motion is an example of:

1. uniformly accelerated motion
2. uniform motion
3. non-uniform accelerated motion
4. all of the above

Subtopic:  Types of Motion |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle moves in the \(\mathrm{XY}\text-\text{plane}\) according to the equation \(\vec{r}=\left ( 5\hat{i}+3\hat{j} \right )\text{sin}(2t).\) The motion of the particle is along:
1. a straight line and is periodic.
2. a circle and is non-periodic.
3. an ellipse and is periodic.
4. a parabola and is non-periodic.
Subtopic:  Simple Harmonic Motion |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle is performing SHM with amplitude \(A\) and angular velocity \(\omega.\) The ratio of the magnitude of maximum velocity to maximum acceleration is:
1. \(\omega\)
2. \(\dfrac{1}{\omega }\)

3. \(\omega^{2} \)
4. \(A\omega\)

Subtopic:  Simple Harmonic Motion |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The acceleration-time graph of a particle undergoing SHM is shown in the figure. Then,

                  

1. the velocity of the particle at point 2 is zero
2. velocity at point 3 is zero
3. velocity at point 2 is +ve and maximum
4. both (2) & (3)
Subtopic:  Simple Harmonic Motion |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The displacement \( x\) of a particle varies with time \(t\) as \(x = A sin\left (\frac{2\pi t}{T} +\frac{\pi}{3} \right)\)The time taken by the particle to reach from \(x = \frac{A}{2} \) to \(x = -\frac{A}{2} \) will be:

1. \(\frac{T}{2}\) 2. \(\frac{T}{3}\)
3. \(\frac{T}{12}\) 4. \(\frac{T}{6}\)

Subtopic:  Phasor Diagram |
 50%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

All the surfaces are smooth and springs are ideal. If a block of mass \(m\) is given the velocity \(v_0\) in the right direction, then the time period of the block shown in the figure will be:

                       
1. \(\frac{12l}{v_0}\)
2. \(\frac{2l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
3. \(\frac{4l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
4. \( \frac{\pi}{2}\sqrt{\frac{m}{k}}\)

Subtopic:  Spring mass system |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle is attached to a vertical spring and pulled down a distance of \(0.01~\text{m}\) below its mean position and released. If its initial acceleration is \(0.16~\text{m/s}^2\), then its time period in seconds will be:
1. \(\pi\)
2. \(\frac{\pi}{2}\)
3. \(\frac{\pi}{4}\)
4. \(2\pi\)
Subtopic:  Spring mass system |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Select Question Set:
filter