All the surfaces are smooth and springs are ideal. If a block of mass \(m\) is given the velocity \(v_0\) in the right direction, then the time period of the block shown in the figure will be:
1. \(\frac{12l}{v_0}\)
2. \(\frac{2l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
3. \(\frac{4l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
4. \( \frac{\pi}{2}\sqrt{\frac{m}{k}}\)
The displacement \( x\) of a particle varies with time \(t\) as \(x = A sin\left (\frac{2\pi t}{T} +\frac{\pi}{3} \right)\). The time taken by the particle to reach from \(x = \frac{A}{2} \) to \(x = -\frac{A}{2} \) will be:
1. | \(\frac{T}{2}\) | 2. | \(\frac{T}{3}\) |
3. | \(\frac{T}{12}\) | 4. | \(\frac{T}{6}\) |
A force, \(F=-Kx^{n}\) acts on a particle, where \(K\) is a positive constant. The value of \(n\) for which motion can be oscillatory is:
1. \(4\)
2. \(6\)
3. \(3\)
4. \(2\)
When a periodic force \(\vec{F_1}\) acts on a particle, the particle oscillates according to the equation \(x=A\sin\omega t\). Under the effect of another periodic force \(\vec{F_2}\), the particle oscillates according to the equation \(y=B\sin(\omega t+\frac{\pi}{2})\). The amplitude of oscillation when the force (\(\vec{F_1}+\vec{F_2}\)) acts are:
1. | \(A+B\) | 2. | \(\sqrt{A^2+B^2}\) |
3. | \(\large\frac{\sqrt{A^2+B^2}}{2}\) | 4. | \(\sqrt{AB}\) |
The total mechanical energy of a linear harmonic oscillator is \(600~\text J.\) At the mean position, its potential energy is \(100~\text J.\) The minimum potential energy of the oscillator is:
1. \(50~\text J\)
2. \(500~\text J\)
3. \(0\)
4. \(100~\text J\)
Simple harmonic motion is an example of:
1. | uniformly accelerated motion |
2. | uniform motion |
3. | non-uniform accelerated motion |
4. | all of the above |
1. | a straight line and is periodic. |
2. | a circle and is non-periodic. |
3. | an ellipse and is periodic. |
4. | a parabola and is non-periodic. |
A particle is performing SHM with amplitude \(A\) and angular velocity \(\omega.\) The ratio of the magnitude of maximum velocity to maximum acceleration is:
1. \(\omega\)
2. \(\dfrac{1}{\omega }\)
3. \(\omega^{2} \)
4. \(A\omega\)
The acceleration-time graph of a particle undergoing SHM is shown in the figure. Then,
1. | the velocity of the particle at point 2 is zero |
2. | velocity at point 3 is zero |
3. | velocity at point 2 is +ve and maximum |
4. | both (2) & (3) |