For the following given equations and values, determine the enthalpy of reaction at 298 K for the reaction:
C2H4(g) + 6F2(g) 2CF4(g) + 4HF(g)
H2(g) + F2(g) 2HF(g) = -537 kJ
C(s) + 2F2(g) CF4(g) =-680 kJ
2C(s) + 2H2(g) C2H4(g) = 52 kJ
1. –1165 kJ
2. –2486 kJ
3. +1165 kJ
4. +2486 kJ
Entropy decreases during:
1. Crystallization of sucrose from solution
2. Rusting of iron
3. Melting of ice
4. Vaporization of camphor
The volume versus temperature graph for two moles of monoatomic gas is shown in the figure. The ratio of work done by the gas to the heat absorbed by it in the process \(A\) to \(B\) is:
1. | \(\dfrac{1}{2}\) | 2. | \(\dfrac{2}{5}\) |
3. | \(\dfrac{3}{7}\) | 4. | \(\dfrac{3}{5}\) |
1. \(2R\)
2. \(3R\)
3. \(5R\)
4. \(7R\)
A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37.0ºC. As it does so, it absorbs 208 J of heat. The values of q and w for the process will be-
(R = 8.314 J/mol K) (ln 7.5 = 2.01)
1. | q = +208 J, w = -208 J | 2. | q = -208 J, w = -208 J |
3. | q = -208 J, w = + 208 J | 4. | q = +208 J, w = + 208 J |
1. | \(W_1<W_2<W_3\) | 2. | \(W_2<W_1=W_3\) |
3. | \(W_2<W_1<W_3\) | 4. | \(W_1>W_2>W_3\) |
A gas at initial temperature \(T\) undergoes sudden expansion from volume \(V\) to \(2V.\) Then,
1. | the process is adiabatic. |
2. | the process is isothermal. |
3. | the work done in this process is zero. |
4. | the entropy in the process does not change. |
(298K) of methanol is given by the chemical equation:
1. \(\mathrm{C}(\text { diamond })+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{l})}\)
2. \(\mathrm{CH}_{4(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{g})}\)
3. \(\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{l})}\)
4. \(\mathrm{C}(\text { graphite })+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{l})}\)
When 4 g of iron is burnt to ferric oxide at a constant pressure, 29.28 kJ of heat is evolved.
The enthalpy of formation of ferric oxide will be-
(At. mass of Fe = 56) ?
1. 81.98 kJ
2. 819.8 kJ
3. 40.99 kJ
4. +819.8 kJ
Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure:
ABIsothermal expansion
ACAdiabatic expansion
Which of the following options is not correct?
1.
2.
3.
4.