Two wires of copper having length in the ratio of \(4:1\) and radii ratio of \(1:4\) are stretched by the same force. The ratio of longitudinal strain in the two will be:
1. | \(1:16\) | 2. | \(16:1\) |
3. | \(1:64\) | 4. | \(64:1\) |
1. | \(\times\)strain | stress
2. | \(\frac{1}{2}\)\(\times\) stress\(\times\)strain |
3. | \(2\times\) stress\(\times\)strain |
4. | stress/strain |
The Young's modulus of a wire is \(Y.\) If the energy per unit volume is \(E,\) then the strain will be:
1. \(\sqrt{\frac{2E}{Y}}\)
2. \(\sqrt{2EY}\)
3. \(EY\)
4. \(\frac{E}{Y}\)
A wire of length \(L\) and cross-sectional area \(A\) is made of a material of Young's modulus \(Y.\) It is stretched by an amount \(x.\) The work done is:
1. \(\dfrac{Y x A}{2 L}\)
2. \(\dfrac{Y x^{2} A}{L}\)
3. \(\dfrac{Y x^{2} A}{2 L}\)
4. \(\dfrac{2 Y x^{2} A}{L}\)
lf \(\rho\) is the density of the material of a wire and \(\sigma\) is the breaking stress, the greatest length of the wire that can hang freely without breaking is:
1. \(\dfrac{2}{\rho g}\)
2. \(\dfrac{\rho}{\sigma g}\)
3. \(\dfrac{\rho g}{2 \sigma}\)
4. \(\dfrac{\sigma}{\rho g}\)
Steel and copper wires of the same length and area are stretched by the same weight one after the other. Young's modulus of steel and copper are \(2\times10^{11} ~\text{N/m}^2\) and \(1.2\times10^{11}~\text{N/m}^2.\) The ratio of increase in length is:
1. | \(2 \over 5\) | 2. | \(3 \over 5\) |
3. | \(5 \over 4\) | 4. | \(5 \over 2\) |
In the CGS system, Young's modulus of a steel wire is \(2\times 10^{12}~\text{dyne/cm}^2.\) To double the length of a wire of unit cross-section area, the force required is:
1. \(4\times 10^{6}~\text{dynes}\)
2. \(2\times 10^{12}~\text{dynes}\)
3. \(2\times 10^{12}~\text{newtons}\)
4. \(2\times 10^{8}~\text{dynes}\)
The following four wires (length \(L\) and diameter \(D\)) are made of the same material. Which of these will have the largest extension when the same tension is applied?
1. | \(L=50\) cm, \(D=0.5\) mm |
2. | \(L=100\) cm, \(D=1\) mm |
3. | \(L=200\) cm, \(D=2\) mm |
4. | \(L=300\) cm, \(D=0.5\) mm |
To break a wire, a force of \(10^6~\text{N/m}^{2}\) is required. If the density of the material is \(3\times 10^{3}~\text{kg/m}^3,\) then the length of the wire which will break by its own weight will be:
1. \(34~\text m\)
2. \(30~\text m\)
3. \(300~\text m\)
4. \(3~\text m\)
One end of a uniform wire of length \(L\) and of weight \(W\) is attached rigidly to a point in the roof and a weight \(W_1\) is suspended from its lower end. If \(A\) is the area of the cross-section of the wire, the stress in the wire at a height \(\frac{3L}{4}\) from its lower end is:
1. \(\frac{W+W_1}{A}\)
2. \(\frac{4W+W_1}{3A}\)
3. \(\frac{3W+W_1}{4A}\)
4. \(\frac{\frac{3}{4}W+W_1}{A}\)