The determination of the value of acceleration due to gravity \((g)\) by simple pendulum method employs the formula,
\(g=4\pi^2\frac{L}{T^2}\)
The expression for the relative error in the value of \(g\) is:
1. \(\frac{\Delta g}{g}=\frac{\Delta L}{L}+2\Big(\frac{\Delta T}{T}\Big)\)
2. \(\frac{\Delta g}{g}=4\pi^2\Big[\frac{\Delta L}{L}-2\frac{\Delta T}{T}\Big]\)
3. \(\frac{\Delta g}{g}=4\pi^2\Big[\frac{\Delta L}{L}+2\frac{\Delta T}{T}\Big]\)
4. \(\frac{\Delta g}{g}=\frac{\Delta L}{L}-2\Big(\frac{\Delta T}{T}\Big)\)
1. | Dimensions of \(\beta\) are same as that of force. |
2. | Dimensions of \(\alpha^{-1}x\) are same as that of energy. |
3. | Dimensions of \(\eta^{-1} \sin \theta\) are same as that of \(\alpha \beta\). |
4. | Dimensions of \(\alpha\) same as that of \(\beta\). |
1. | \(\dfrac P V\) | 2. | \(\dfrac V P\) |
3. | \(PV\) | 4. | \(PV^3\) |
List-I | List-II |
A. Torque | I. N-m s-1 |
B. Stress | II. J-kg-1 |
C. Latent Heat | III. N-m |
D. Power | IV. N-m-2 |
1. | A-III, B-II, C-I, D-IV |
2. | A-III, B-IV, C-II, D-I |
3. | A-IV, B-I, C-III, D-II |
4. | A-II, B-III, C-I, D-IV |
1. | \(1\) | 2. | \(2\) |
3. | \(3\) | 4. | \(5\) |