The radius of a circle is stated as \(2.12\) cm. Its area should be written as:
1. | \(14\mathrm{~cm^2}\) | 2. | \(14.1\mathrm{~cm^2}\) |
3. | \(14.11\mathrm{~cm^2}\) | 4. | \(14.1124\mathrm{~cm^2}\) |
A screw gauge gives the following readings when used to measure the diameter of a wire:
Main scale reading: \(0\) mm
Circular scale reading: \(52\) divisions
Given that \(1\) mm on the main scale corresponds to \(100\) divisions on the circular scale, the diameter of the wire that can be inferred from the given data is:
1. | \(0.26\) cm | 2. | \(0.052\) cm |
3. | \(0.52\) cm | 4. | \(0.026\) cm |
If force \([F]\), acceleration \([A]\) and time \([T]\) are chosen as the fundamental physical quantities, then find the dimensions of energy:
1. \(\left[FAT^{-1}\right]\)
2. \(\left[FA^{-1}T\right]\)
3. \(\left[FAT\right]\)
4. \(\left[FAT^{2}\right]\)
1. | both units and dimensions |
2. | units but no dimensions |
3. | dimensions but no units |
4. | no units and no dimensions |