Select Question Set:
filter

A particle starts from the origin at \(t=0\) with a velocity of \(5.0\hat i~\text{m/s}\) and moves in the \(x\text-y\) plane under the action of a force that produces a constant acceleration of \((3.0\hat i + 2.0\hat j)~\text{m/s}^2.\) What is the speed of the particle at the instant its \(x\text-\)coordinate is \(84~\text m?\)
1. \(36~\text{m/s}\)
2. \(26~\text{m/s}\)
3. \(1~\text{m/s}\)
4. Zero

Subtopic:  Uniformly Accelerated Motion |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A car starts from rest and accelerates at \(5~\text{m/s}^{2}.\) At \(t=4~\text{s}\), a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at \(t=6~\text{s}?\) 
(Take \(g=10~\text{m/s}^2\))

1. \(20\sqrt{2}~\text{m/s}, 0~\text{m/s}^2\)
2. \(20\sqrt{2}~\text{m/s}, 10~\text{m/s}^2\)
3. \(20~\text{m/s}, 5~\text{m/s}^2\)
4. \(20~\text{m/s}, 0~\text{m/s}^2\)

Subtopic:  Projectile Motion |
 64%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle moving in a circle of radius \(R\) with a uniform speed takes a time \(T\) to complete one revolution. If this particle were projected with the same speed at an angle \(\theta\) to the horizontal, the maximum height attained by it equals \(4R.\) The angle of projection, \(\theta\) is then given by:
1. \( \theta=\sin ^{-1}\left(\frac{\pi^2 {R}}{{gT}^2}\right)^{1/2}\) 2. \(\theta=\sin ^{-1}\left(\frac{2 {gT}^2}{\pi^2 {R}}\right)^{1 / 2}\)
3. \(\theta=\cos ^{-1}\left(\frac{{gT}^2}{\pi^2 {R}}\right)^{1 / 2}\) 4. \(\theta=\cos ^{-1}\left(\frac{\pi^2 {R}}{{gT}^2}\right)^{1 / 2}\)
Subtopic:  Projectile Motion |
 71%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The position of a particle is given by; \(\vec{r}=(3.0t\hat{i}-2.0t^{2}\hat{j}+4.0\hat{k})~\text{m},\) where \(t\) is in seconds and the coefficients have the proper units for \(r\) to be in meters. The magnitude and direction of \(\vec{v}(t)\) at \(t=1.0~\text s\) are:
1. \(4~\text{m/s},\) \(53^\circ\) with \(x\)-axis
2. \(4~\text{m/s},\) ​​​​​​​\(37^\circ\) with \(x\)-axis
3. \(5~\text{m/s},\) \(53^\circ\) with \(y\)-axis
4. \(5~\text{m/s},\) ​​​​​​​ \(53^\circ\) with \(x\)-axis
Subtopic:  Speed & Velocity |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two particles are separated by a horizontal distance \(x\) as shown in the figure. They are projected at the same time as shown in the figure with different initial speeds. The time after which the horizontal distance between them becomes zero will be:
 

1. \(\dfrac{x}{u}\) 2. \(\dfrac{u}{2 x}\)
3. \(\dfrac{2 u}{x}\) 4. None of the above
Subtopic:  Relative Motion |
 67%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two boys are standing at the ends \(A\) and \(B\) of the ground where \(AB =a.\) The boy at \(B\) starts running in a direction perpendicular to \(AB\) with velocity \(v_1.\) The boy at \(A\) starts running simultaneously with velocity \(v\) and catches the other boy in a time \(t,\) where \(t\) is:

1. \(\frac{a}{\sqrt{v^2+v^2_1}}\) 2. \(\frac{a}{\sqrt{v^2-v^2_1}}\)
3. \(\frac{a}{v-v_1}\) 4. \(\frac{a}{v+v_1}\)
Subtopic:  Relative Motion |
 63%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A stone tied to the end of a \(1\) m long string is whirled in a horizontal circle at a constant speed. If the stone makes \(22\) revolutions in \(44\) seconds, what is the magnitude and direction of acceleration of the stone?

1. \(\pi^2 ~\text{ms}^{-2} \) and direction along the tangent to the circle.
2. \(\pi^2 ~\text{ms}^{-2} \)  and direction along the radius towards the centre.
3. \(\frac{\pi^2}{4}~\text{ms}^{-2} \) and direction along the radius towards the centre.
4. \(\pi^2~\text{ms}^{-2} \) and direction along the radius away from the centre.

Subtopic:  Circular Motion |
 78%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle is moving southward with a velocity of \(10\) m/s. In \(4\) s, the velocity changes to \(10\) m/s eastward. The average acceleration of particle during this time interval is:
1. \(5\sqrt2\) m/s2 SE 2. \(\dfrac{5}{\sqrt2}\) m/s2 SE
3. \(5\sqrt2\) m/s2 NE 4. \(\dfrac{5}{\sqrt2}\) m/s2 NE
Subtopic:  Acceleration |
 54%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.

The angle between \(\mathrm{A}=\hat{\mathbf{i}}+\hat{\mathbf{j}}\) and \(\mathrm{B}=\hat{\mathbf{i}}-\hat{\mathbf{j}}\) is:
1. \(45^{\circ} \)
2. \(90^{\circ} \)
3. \(-45^{\circ} \)
4. \(180^{\circ}\)
Subtopic:  Scalar Product |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If \(\left| \vec{A}\right|\) = \(2\) and \(\left| \vec{B}\right|\) = \(4,\) then match the relations in column-I with the angle \(\theta\) between \(\vec{A}\) and \(\vec{B}\) in column-II.     

Column-I Column-II
(A) \(\left| \vec{A}\times \vec{B}\right|\) \(=0\)  (p)  \(\theta=30^\circ\)
(B)\(\left| \vec{A}\times \vec{B}\right|\)\(=8\)   (q) \(\theta=45^\circ\)
(C) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\)  (r)  \(\theta=90^\circ\)
(D) \(\left| \vec{A}\times \vec{B}\right|\) \(=4\sqrt2\) (s)  \(\theta=0^\circ\)
1. A(s), B(r), C(q), D(p)
2. A(s), B(p), C(r), D(q)
3. A(s), B(p), C(q), D(r)
4. A(s), B(r), C(p), D(q)
Subtopic:  Vector Product |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Select Question Set:
filter