Two spheres of masses \(m\) and \(M\) are situated in air and the gravitational force between them is \(F.\) If the space around the masses is filled with a liquid of specific density \(3,\) the gravitational force will become:
1. \(3F\)
2. \(F\)
3. \(F/3\)
4. \(F/9\)
Rohini satellite is at a height of \(500\) km and Insat-B is at a height of \(3600\) km from the surface of the earth. The relation between their orbital velocity (\(v_R,~v_i\)) is:
1. \(v_R>v_i\)
2. \(v_R<v_i\)
3. \(v_R=v_i\)
4. no specific relation
1. | \(\frac{S}{2},\frac{\sqrt{3gS}}{2}\) | 2. | \(\frac{S}{4}, \sqrt{\frac{3gS}{2}}\) |
3. | \(\frac{S}{4},\frac{3gS}{2}\) | 4. | \(\frac{S}{4},\frac{\sqrt{3gS}}{3}\) |
The escape velocity from the Earth's surface is \(v\). The escape velocity from the surface of another planet having a radius, four times that of Earth and the same mass density is:
1. | \(3v\) | 2. | \(4v\) |
3. | \(v\) | 4. | \(2v\) |
1. | \(g' = 3g\) | 2. | \(g' = 9g\) |
3. | \(g' = \frac{g}{9}\) | 4. | \(g' = 27g\) |
A planet revolving in elliptical orbit has:
(A) | a constant velocity of revolution. |
(B) | the least velocity when it is nearest to the sun. |
(C) | its areal velocity directly proportional to its velocity. |
(D) | its areal velocity inversely proportional to its velocity. |
(E) | to follow a trajectory such that the areal velocity is constant. |
Choose the correct answer from the options given below:
1. | (A) only | 2. | (D) only |
3. | (C) only | 4. | (E) only |
1. | \(v_o=v_e\) | 2. | \(v_e=\sqrt{2v_o}\) |
3. | \(v_e=\sqrt{2}~v_o\) | 4. | \(v_o=\sqrt{2}~v_e\) |
(a) | The universal law of gravitation is an assumption or hypothesis. |
(b) | The universal law of gravitation can be proved. |
(c) | The universal law of gravitation can be verified. |
1. | \(U > mgh\) |
2. | \(U < mgh\) |
3. | \(U = mgh\) |
4. | \(h,\) considered relative to the radius of the earth. | any of the above may be true depending on the value of
An artificial satellite revolves around a planet for which gravitational force \((F)\) varies with the distance \(r\) from its centre as \(F \propto r^{2}.\) If \(v_0\) is its orbital speed, then:
1. | \(v_{0} \propto r^{-1/2}\) | 2. | \(v_{0} \propto r^{3/2}\) |
3. | \(v_{0} \propto r^{-3/2}\) | 4. | \(v_{0} \propto r\) |