Select Question Set:
filter

If the time of mean position from amplitude (extreme) position is \(6\) seconds, then the frequency of SHM will be:
1. \(0.01~\text{Hz}\) 2. \(0.02~\text{Hz}\)
3. \(0.03~\text{Hz}\) 4. \(0.04~\text{Hz}\)

Subtopic:  Simple Harmonic Motion |
 70%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two spherical bobs of masses \(M_A\) and \(M_B\) are hung vertically from two strings of length \(l_A\) and \(l_B\) respectively. If they are executing SHM with frequency as per the relation \(f_A=2f_B,\) Then:
1. \(l_A = \frac{l_B}{4}\)
2. \(l_A= 4l_B\)
3. \(l_A= 2l_B~\&~M_A=2M_B\)
4. \(l_A= \frac{l_B}{2}~\&~M_A=\frac{M_B}{2}\)

Subtopic:  Angular SHM |
 74%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A spring elongates by a length 'L' when a mass 'M' is suspended to it. Now a tiny mass 'm' is attached to the mass 'M' and then released. The new time period of oscillation will be:

1.  \(2 \pi \sqrt{\frac{\left(\right. M   +   m \left.\right) l}{Mg}}\)

2. \(2 \pi \sqrt{\frac{ml}{Mg}}\)

3. \(2 \pi \sqrt{L   /   g}\)

4. \(2 \pi \sqrt{\frac{Ml}{\left(\right. m   +   M \left.\right) g}}\)

Subtopic:  Spring mass system |
 60%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When a mass is suspended separately by two different springs, in successive order, then the time period of oscillations is \(t _1\) and \(t_2\) respectively. If it is connected by both springs as shown in the figure below, then the time period of oscillation becomes \(t_0.\) The correct relation between \(t_0,\) \(t_1\) & \(t_2\) is:

1. t02=t12+t22

2. t0-2=t1-2+t2-2

3. t0-1=t1-1+t2-1

4. t0=t1+t2

Subtopic:  Combination of Springs |
 70%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle of mass \(m\) oscillates with simple harmonic motion between points \(x_1\) and \(x_2\), the equilibrium position being \(O\). Its potential energy is plotted. It will be as given below in the graph:

1. 2.
3. 4.
Subtopic:  Energy of SHM |
 86%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The potential energy of a simple harmonic oscillator, when the particle is halfway to its endpoint, will be:
1. \(\frac{2E}{3}\)
2. \(\frac{E}{8}\)
3. \(\frac{E}{4}\)
4. \(\frac{E}{2}\)

Subtopic:  Energy of SHM |
 81%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A spring is stretched by \(5~\text{cm}\) by a force \(10~\text{N}\). The time period of the oscillations when a mass of \(2~\text{kg}\) is suspended by it is:
1. \(3.14~\text{s}\)
2. \(0.628~\text{s}\)
3. \(0.0628~\text{s}\)
4. \(6.28~\text{s}\)

Subtopic:  Spring mass system |
 70%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The equation of a simple harmonic wave is given by \(y=3\sin \frac{\pi}{2}(50t-x)\) where \(x \) and \(y\) are in meters and \(t\) is in seconds. The ratio of maximum particle velocity to the wave velocity is:

1. \(\frac{3\pi}{2}\) 2. \(3\pi\)
3. \(\frac{2\pi}{3}\) 4. \(2\pi\)
Subtopic:  Wave Motion |
 79%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A spring-mass system oscillates in a car. If the car accelerates on a horizontal road, the frequency of oscillation will:
1. increase
2. decrease
3. remain same
4. become zero

Subtopic:  Spring mass system |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The (displacement-time) graph of a particle executing SHM is shown in the figure. Then:

(a) the force is zero at \(t=\dfrac{3T}{4}\)
(b) the acceleration is maximum at \(t=\dfrac{4T}{4}\) 
(c) the velocity is maximum at \(t=\dfrac{T}{4}\)
(d) the potential energy is equal to the kinetic energy of oscillation at \(t=\dfrac{T}{2}\)
Which of the statement/s given above is/are true?
1. (a), (b) and (d) only 2. (a), (b) and (c) only
3. (b), (c) and (d) only  4. (c) and (d) only
Subtopic:  Simple Harmonic Motion |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Select Question Set:
filter