A particle is moving on a circular path of radius \(R.\) When the particle moves from point \(A\) to \(B\) (angle \( \theta\)), the ratio of the distance to that of the magnitude of the displacement will be:
1. \(\dfrac{\theta}{\sin\frac{\theta}{2}}\)
2. \(\dfrac{\theta}{2\sin\frac{\theta}{2}}\)
3. \(\dfrac{\theta}{2\cos\frac{\theta}{2}}\)
4. \(\dfrac{\theta}{\cos\frac{\theta}{2}}\)
Two particles move from \(A\) to \(C\) and \(A\) to \(D\) on a circle of radius \(R\) and the diameter \(AB.\) If the time taken by both particles is the same, then the ratio of magnitudes of their average velocities is:
1. \(2\)
2. \(2\sqrt{3}\)
3. \(\sqrt{3}\)
4. \(\dfrac{\sqrt{3}}{2}\)
A particle is moving along a curve. Select the correct statement.
1. | If its speed is constant, then it has no acceleration. |
2. | If its speed is increasing, then the acceleration of the particle is along its direction of motion. |
3. | If its speed is decreasing, then the acceleration of the particle is opposite to its direction of motion. |
4. | If its speed is constant, its acceleration is perpendicular to its velocity. |
A particle is moving in the \(XY\) plane such that \(x = \left(t^2 -2t\right)~\text m,\) and \(y = \left(2t^2-t\right)~\text m,\) then:
1. | the acceleration is zero at \(t=1~\text s.\) |
2. | the speed is zero at \(t=0~\text s.\) |
3. | the acceleration is always zero. |
4. | the speed is \(3~\text{m/s}\) at \(t=1~\text s.\) |
A man is walking on a horizontal road at a speed of \(4~\text{km/hr}.\) Suddenly, the rain starts vertically downwards with a speed of \(7~\text{km/hr}.\) The magnitude of the relative velocity of the rain with respect to the man is:
1. \(\sqrt{33}~\text{km/hr}\)
2. \(\sqrt{65}~\text{km/hr}\)
3. \(8~\text{km/hr}\)
4. \(4~\text{km/hr}\)
Which of the following is the angle between velocity and acceleration of a body in uniform circular motion?
1. \(30^\circ\)
2. \(45^\circ\)
3. \(60^\circ\)
4. \(90^\circ\)
The position of a particle at time \(t\) is given by, \(x=3t^3\), \(y=2t^2+8t\), and \(z=6t-5\). The initial velocity of the particle is:
1. | \(20\) unit | 2. | \(10\) unit |
3. | \(5\) unit | 4. | \(13\) unit |
A man can row a boat with a speed of \(10~\text{kmph}\) in still water. The river flows at \(6~\text{kmph}.\) If he crosses the river from one bank to the other along the shortest possible path, the time taken to cross the river of width \(1~\text{km}\) is:
1. \(\frac{1}{8}~\text{hr}\)
2. \(\frac{1}{4}~\text{hr}\)
3. \(\frac{1}{2}~\text{hr}\)
4. \(1~\text{hr}\)
A bus is going to the North at a speed of \(30\) kmph. It makes a \(90^{\circ}\) left turn without changing the speed. The change in the velocity of the bus is:
1. | \(30~\text{kmph}\) towards \(\mathrm{W}\) |
2. | \(30~\text{kmph}\) towards \(\mathrm{S\text-W}\) |
3. | \(42.4~\text{kmph}\) towards \(\mathrm{S\text-W}\) |
4. | \(42.4~\text{kmph}\) towards \(\mathrm{N\text-W}\) |
Two bullets are fired simultaneously horizontally and at different speeds from the same place. Which bullet will hit the ground first? (Air resistance is neglected)
1. | The faster one |
2. | The slower one |
3. | Depends on masses |
4. | Both will reach simultaneously |