1. | \(9~{\mu \text{F}}\) | 2. | \(2~{\mu \text{F}}\) |
3. | \(3~{\mu \text{F}}\) | 4. | \(6~{\mu \text{F}}\) |
Two capacitors of capacity \(2~\mu\text{F}\) and \(3~\mu\text{F}\) are charged to the same potential difference of \(6~\text V.\) Now they are connected with opposite polarity as shown. After closing switches \(S_1~\text{and}~S_2\), their final potential difference becomes:
1. | \(\text{zero} \) | 2. | \(\frac{4}{3}~\text{V} \) |
3. | \(3~\text{V} \) | 4. | \(\frac{6}{5}~\text{V} \) |
Three identical capacitors are connected as follows:
Which of the following shows the order of increasing capacitance (smallest first)?
1. | \(\mathrm{(3), (2), (1)}\) | 2. | \(\mathrm{(1), (2), (3)}\) |
3. | \(\mathrm{(2), (1), (3)}\) | 4. | \(\mathrm{(2), (3), (1)}\) |