1. | \(g' = 3g\) | 2. | \(g' = 9g\) |
3. | \(g' = \frac{g}{9}\) | 4. | \(g' = 27g\) |
A particle is located midway between two point masses each of mass \(M\) kept at a separation \(2d.\) The escape speed of the particle is:
(neglecting the effect of any other gravitational effect)
1. \(\sqrt{\frac{2 GM}{d}}\)
2. \(2 \sqrt{\frac{GM}{d}}\)
3. \(\sqrt{\frac{3 GM}{d}}\)
4. \(\sqrt{\frac{GM}{2 d}}\)
A satellite of mass \(m\) is orbiting the earth (of radius \(R\)) at a height \(h\) from its surface. What is the total energy of the satellite in terms of \(g_0?\)
(\(g_0\) is the value of acceleration due to gravity at the earth's surface)
1. | \(\dfrac{mg_0R^2}{2(R+h)}\) | 2. | \(-\dfrac{mg_0R^2}{2(R+h)}\) |
3. | \(\dfrac{2mg_0R^2}{(R+h)}\) | 4. | \(-\dfrac{2mg_0R^2}{(R+h)}\) |
A body of mass \(m\) is taken from the Earth’s surface to the height equal to twice the radius \((R)\) of the Earth. The change in potential energy of the body will be:
1. | \(\frac{2}{3}mgR\) | 2. | \(3mgR\) |
3. | \(\frac{1}{3}mgR\) | 4. | \(2mgR\) |
Dependence of intensity of gravitational field \((\mathrm{E})\) of the earth with distance \((\mathrm{r})\) from the centre of the earth is correctly represented by: (where \(\mathrm{R}\) is the radius of the earth)
1. | 2. | ||
3. | 4. |
1. | \(180 ~\text{N/kg}\) | 2. | \(0.05 ~\text{N/kg}\) |
3. | \(50 ~\text{N/kg}\) | 4. | \(20 ~\text{N/kg}\) |
A body weighs \(72~\text{N}\) on the surface of the earth. What is the gravitational force on it at a height equal to half the radius of the earth?
1. | \(32~\text{N}\) | 2. | \(30~\text{N}\) |
3. | \(24~\text{N}\) | 4. | \(48~\text{N}\) |
For the moon to cease as the earth's satellite, its orbital velocity has to be increased by a factor of:
1. | \(2\) | 2. | \(\sqrt{2}\) |
3. | \(1/\sqrt{2}\) | 4. | \(4\) |