The figure shows a rod of length \(5\) m. Its ends, \(A\) and \(B\), are restrained to moving in horizontal and vertical guides. When the end \(A\) is \(3\) m above \(O\), it moves at \(4\) m/s. The velocity of end \(B\) at that instant is:
1. \(2\) m/s
2. \(3\) m/s
3. \(4\) m/s
4. \(0.20\) m/s
In the given figure, the spring balance is massless, so the reading of the spring balance will be:
1. | \(2\) kg | 2. | \(3.5\) kg |
3. | \(2.9\) kg | 4. | \(3.1\) kg |
A small coin is kept at a distance \(r\) from the centre of a gramophone disc rotating at an angular speed \(\omega\). The minimum coefficient of friction for which a coin will not slip is:
1. \(\dfrac{rω^{2}}{g}\)
2. \(\dfrac{g}{r\omega^2}\)
3. \(\dfrac{r^2ω^{2}}{g}\)
4. \(\dfrac{rω}{g}\)
1. | \(50\) ms–2 | 2. | \(1.2\) ms–2 |
3. | \(150\) ms–2 | 4. | \(1.5\) ms–2 |
A point mass \(m\) is moved in a vertical circle of radius \(r\) with the help of a string. The velocity of the mass is \(\sqrt{7 g r} \) at the lowest point.
The tension in the string at the lowest point will be:
1. \(6mg\)
2. \(7mg\)
3. \(8mg\)
4. \(mg\)
A body of mass \(m\) is kept on a rough horizontal surface (coefficient of friction = \(\mu).\) A horizontal force is applied to the body, but it does not move. The resultant of normal reaction and the frictional force acting on the object is given by \(\vec {F}\) where:
1. \(|{\vec {F}}| = mg+\mu mg\)
2. \(|\vec {F}| =\mu mg\)
3. \(|\vec {F}| \le mg\sqrt{1+\mu^2}\)
4. \(|\vec{F}| = mg\)
On the application of an impulsive force, a sphere of mass \(500\) grams starts moving with an acceleration of \(10\) m/s2. The force acts on it for \(0.5\) s. The gain in the momentum of the sphere will be:
1. \(2.5\) kg-m/s
2. \(5\) kg-m/s
3. \(0.05\) kg-m/s
4. \(25\) kg-m/s