The four graphs show different possible relationships between \(\text{ln}\left(\dfrac{{R}}{{R}_0}\right)\) and \(\text{ln}(A).\)
(where \(R\) is the radius of a nucleus and \(A \) is the mass number of the nucleus)
Which of these graphs (1, 2, 3, or 4) correctly represents the relationship between these nuclear parameters?
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
A. | Volume of the nucleus is directly proportional to the mass number. |
B. | Volume of the nucleus is independent of mass number. |
C. | Density of the nucleus is directly proportional to the mass number. |
D. | Density of the nucleus is directly proportional to the cube root of the mass number. |
E. | Density of the nucleus is independent of the mass number. |
1. | (A) and (D) only. |
2. | (A) and (E) only. |
3. | (B) and (E) only. |
4. | (A) and (C) only. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | (a) in both cases I and II. |
2. | (a) in case I and (b) in case II. |
3. | (a) in case II and (b) in case I. |
4. | (b) in both cases I and II. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(E_1\): total binding energy of initial nuclei |
2. | \(E_2\): total binding energy of final nuclei |
3. | \(A_1\): total number of nucleons of initial nuclei |
4. | \(A_2\): total number of nucleons of final nuclei |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Assertion (A): | The density of the nucleus is much higher than that of ordinary matter. |
Reason (R): | \(10^5\) times smaller. | Most of the mass of the atom is concentrated in the nucleus while the size of this nucleus is almost
1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
3. | (A) is True but (R) is False. |
4. | Both (A) and (R) are False. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.