A long solenoid has 800 turns per meter length of the solenoid. A current of 1.6 A flows through it. The magnetic induction at the end of the solenoid on its axis is:
1.
2.
3.
4.
The unit of reduction factor of the tangent galvanometer is
1. Ampere
2. Gauss
3. Radian
4. None of these
In order to pass 10% of the main current through a moving coil galvanometer of 99 ohms, the resistance of the required shunt is :
1. 9.9 Ω
2. 10 Ω
3. 11 Ω
4. 9 Ω
When a \(12~\Omega\) resistor is connected in parallel with a moving coil galvanometer, its deflection reduces from \(50\) divisions to \(10\) divisions. What will be the resistance of the galvanometer?
1. \(24~\Omega\)
2. \(36~\Omega\)
3. \(48~\Omega\)
4. \(60~\Omega\)
A voltmeter has a resistance of G ohms and range V volts. The value of resistance used in series to convert it into a voltmeter of range nV volts is :
1. nG
2.
3.
4.
Which of the following statement is wrong:
1. Voltmeter should have high resistance
2. Ammeter should have low resistance
3. Ammeter is placed in parallel across the conductor in a circuit
4. Voltmeter is placed in parallel across the conductor in a circuit
A moving coil galvanometer has a resistance of 50 Ωand gives full scale deflection for 10 mA. How could it be converted into an ammeter with a full scale deflection for 1A :
1. 50/99 Ω in series
2. 50/99 Ω in parallel
3. 0.01 Ω in series
4. 0.01 Ω in parallel
The resistance of an ideal voltmeter is
1. Zero
2. Very low
3. Very large
4. Infinite
The net resistance of a voltmeter should be large to ensure that :
1. | It does not get overheated |
2. | It draws excessive current |
3. | It can measure large potential difference |
4. | It does not appreciably change the potential difference to be measured |
A galvanometer having a resistance of \(8~\Omega\) is shunted by a wire of resistance \(2~\Omega\). If the total current is \(1~\text{A}\), the part of it passing through the shunt will be:
1. \(0.25~\text{A}\)
2. \(0.8~\text{A}\)
3. \(0.2~\text{A}\)
4. \(0.5~\text{A}\)