1. | kinetic energy | 2. | mass |
3. | momentum | 4. | all the above |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | some nucleons are created |
2. | some nucleons are destroyed |
3. | energy is converted into mass |
4. | mass is converted into energy |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Given the following particle masses:
\(m_p=1.0072~\text{u}\) (proton)
\(m_n=1.0087~\text{u}\) (neutron)
\(m_e=0.000548~\text{u}\) (electron)
\(m_\nu=0~\text{u}\) (antineutrino)
\(m_d=2.0141~\text{u}\) (deuteron)
Which of the following processes is allowed, considering the conservation of energy and momentum?
1. | \(n+p \rightarrow d+\gamma\) |
2. | \(e^{+}+e^{-} \rightarrow \gamma\) |
3. | \(n+n\rightarrow \text{}\) deuterium atom (electron bound to the nucleus) |
4. | \(p \rightarrow n+e^{+}+\nu\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
In a reactor, \(2\) kg of \({ }_{92} \mathrm{U}^{235}\) fuel is fully used up in \(30\) days. The energy released per fission is \(200\) MeV. Given that the Avogadro number, \(\mathrm{N}=6.023 \times 10^{26}\) per kilo mole and \(1~ \mathrm{eV}=1.6 \times 10^{-19}~\text{J}\). The power output of the reactor is close to:
1. \(125 ~\text{MW}\)
2. \(60~\text{MW}\)
3. \(35 ~\text{MW}\)
4. \(54 ~\text{MW}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.