1. | Binding energy per nucleon is practically constant for nuclei with mass numbers between \(30\) and \(170\). |
2. | Binding energy per nucleon is maximum for \(_{56}\mathrm{Fe}\) (equal to \(8.75~\text{MeV}\)). |
3. | Binding energy per nucleon for \(_{6}\mathrm{Li}\) is lower compared to \(_{4}\mathrm{He}\). |
4. | Higher the binding energy per nucleon, the more unstable is the nucleus. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(E_1\): total binding energy of initial nuclei |
2. | \(E_2\): total binding energy of final nuclei |
3. | \(A_1\): total number of nucleons of initial nuclei |
4. | \(A_2\): total number of nucleons of final nuclei |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \( \mathrm{F}_{\mathrm{pp}}<\mathrm{F}_{\mathrm{pn}}<\mathrm{F}_{\mathrm{nn}} \) | 2. | \( \mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{nn}} \) |
3. | \( \mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}} \) | 4. | \(\mathrm{F}_{\mathrm{pp}}=\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Assertion (A): | Binding energy per nucleon for nuclei (atomic number \(30\) to \(107\)) is independent of atomic number. |
Reason (R): | Nuclear force is short-range force. |
1. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
2. | Both (A) and (R) are True but (R) is not the correct explanation of (A). |
3. | (A) is True but (R) is False. |
4. | Both (A) and (R) are False. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | is only attractive force. |
2. | is only repulsive force. |
3. | maybe attractive or repulsive in nature depending on the distance. |
4. | is a central force. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
We are given the following atomic masses:
\({ }_{92}^{238} \mathrm{U}=238.05079~\text{u},{ }_2^4 \mathrm{He}=4.00260~\text{u} \\ { }_{90}^{234} \mathrm{Th}=234.04363~\text{u},{ }_1^1 \mathrm{H}=1.00783~\text{u}\\ { }_{91}^{237} \mathrm{~Pa}=237.05121~\text{u} \)
Here the symbol \(\mathrm{Pa}\) is for the element protactinium \((Z=91)\).
The energy released during the alpha decay of \({}^{238}_{92}\mathrm{U}\) is:
1. \(6.14~\text{MeV}\)
2. \(7.68~\text{MeV}\)
3. \(4.25~\text{MeV}\)
4. \(5.01~\text{MeV}\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
We are given the following atomic masses:
\({ }_{92}^{238} \mathrm{U}=238.05079~\text{u},{ }_2^4 \mathrm{He}=4.00260~\text{u} \\ { }_{90}^{234} \mathrm{Th}=234.04363~\text{u},{ }_1^1 \mathrm{H}=1.00783~\text{u}\\ { }_{91}^{237} \mathrm{~Pa}=237.05121~\text{u} \)
Here the symbol Pa is for the element protactinium \((Z=91)\).
Then:
1. | \({}_{92}^{238}\mathrm{U}\) can not spontaneously emit a proton. |
2. | \({}_{92}^{238}\mathrm{U}\) can spontaneously emit a proton. |
3. | \(Q\text-\)value of the process is negative. The |
4. | Both (1) and (3) are correct. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.