If the following particles are moving at the same velocity, then which among them will have the maximum de-Broglie wavelength?
1. Neutron
2. Proton
3. particle
4. particle
If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same
(1) Energy
(2) Momentum
(3) Velocity
(4) Angular momentum
The de-Broglie wavelength is proportional to
(1)
(2)
(3)
(4)
Particle nature and wave nature of electromagnetic waves and electrons can be shown by
(1) Electron has small mass, deflected by the metal sheet
(2) X-ray is diffracted, reflected by thick metal sheet
(3) Light is refracted and defracted
(4) Photoelectricity and electron microscopy
1. | 2. | ||
3. | 4. |
The speed of an electron having a wavelength of m is
(a) m/s (b) m/s
(c) m/s (d) m/s
The kinetic energy of electron and proton is J. Then the relation between their de-Broglie wavelengths is
(1)
(2)
(3)
(4)
The de-Broglie wavelength of a particle accelerated with 150 volt potential is m. If it is accelerated by 600 volts p.d., its wavelength will be
(1) 0.25 Å
(2) 0.5 Å
(3) 1.5 Å
(4) 2 Å
The de-Broglie wavelength associated with a hydrogen molecule moving with a thermal velocity of 3 km/s will be
(1) 1 Å
(2) 0.66 Å
(3) 6.6 Å
(4) 66 Å
When the momentum of a proton is changed by an amount , the corresponding change in the de-Broglie wavelength is found to be 0.25%. Then, the original momentum of the proton was
(a) (b) 100
(c) 400 (d) 4