Two identical thin rings each of radius R meters are coaxially placed at a distance R meters apart. If Q1 coulomb and Q2 coulomb are respectively the charges uniformly spread on the two rings, the work done in moving a charge q from the centre of one ring to that of other is 

(1) Zero

(2) q(Q2Q1)(21)2.4πε0R

(3) q2(Q1+Q2)4πε0R

(4) q(Q1+Q2)(2+1)2.4πε0R

Subtopic:  Electric Potential |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A non-conducting ring of radius 0.5 m carries a total charge of 1.11 × 10–10 C distributed non-uniformly on its circumference producing an electric field E everywhere in space. The value of the line integral l=l=0E.dl(l=0 being centre of the ring) in volt is 

(1) + 2

(2) – 1

(3) – 2

(4) Zero

Subtopic:  Relation between Field & Potential |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A negatively charged plate has charge density of 2 × 10–6 C/m2. The initial distance of an electron which is moving toward plate but cannot strike the plate, if it is having energy of 200 eV 

(1) 1.77 mm

(2) 3.51 mm

(3) 1.77 cm

(4) 3.51 cm

Subtopic:  Electric Potential Energy |
 55%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Electric potential is given by

V=6x8xy28y+6yz4z2

Then electric force acting on 2C point charge placed on origin will be 

(1) 2N

(2) 6N

(3) 8N

(4) 20N

Subtopic:  Relation between Field & Potential |
 67%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

Consider two points \(1\) and \(2\) in a region outside a charged sphere. Two points are not very far away from the sphere. If \(E\) and \(V\) represent the electric field vector and the electric potential, which of the following is not possible?

1.  \(\left|\vec{E}_1\right|=\left|\vec{E}_2\right|, V_1=V_2\)
2. \(\vec{E}_1 \neq \vec{E}_2, V_1 \neq V_2\)
3. \(\vec{E}_1 \neq \vec{E}_2, V_1=V_2\)
4. \(\left|\vec{E}_1\right|=\left|\vec{E}_2\right|, V_1 \neq V_2\)
Subtopic:  Relation between Field & Potential |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A uniform electric field pointing in positive x-direction exists in a region. Let A be the origin, B be the point on the x-axis at x = +1 cm and C be the point on the y-axis at y = +1 cm. Then the potentials at the points A, B and C satisfy 

(1) VA < VB

(2) VA > VB

(3) VA < VC

(4) VA > VC

Subtopic:  Relation between Field & Potential |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The electric potential at a point (x, y) in the xy plane is given by V = –kxy. The field intensity at a distance r from the origin varies as 

(1) r2

(2) r

(3) 1r

(4) 1r2

Subtopic:  Relation between Field & Potential |
 56%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

Two equal point charges are fixed at x = –a and x = +a on the x-axis. Another point charge Q is placed at the origin. The change in the electrical potential energy of Q, when it is displaced by a small distance x along the x-axis, is approximately proportional to 

(1) x

(2) x2

(3) x3

(4) 1/x

Subtopic:  Electric Potential Energy |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A solid conducting sphere having a charge Q is surrounded by an uncharged concentric conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be V. If the shell is now given a charge of –3Q, the new potential difference between the same two surfaces is 

(1) V

(2) 2V

(3) 4V

(4) –2V

Subtopic:  Electric Potential |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A piece of cloud is having area \(25\times 10^{6}~\text{m}^2\) and an electric potential of \(10^5\) volts. If the height of cloud is \(0.75~\text{km}\), then find the energy of the electric field between the earth and the cloud will be: 
1. \(250~\text{J}\)
2. \(759~\text{J}\)
3. \(1225~\text{J}\)
4. \(1475~\text{J}\)

Subtopic:  Electric Potential Energy |
 52%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch