Four capacitors are connected as shown in the figure. Their capacities are indicated in the figure. The effective capacitance between points x and y is (in μF)
1.
2.
3.
4. 2
A 10 μF capacitor and a 20 μF capacitor are connected in series across a 200 V supply line. The charged capacitors are then disconnected from the line and reconnected with their positive plates together and negative plates together and no external voltage is applied. What is the potential difference across each capacitor
1.
2.
3. 400 V
4. 200 V
Two condensers C1 and C2 in a circuit are joined as shown in figure. The potential of point A is V1 and that of B is V2. The potential of point D will be
1.
2.
3.
4.
The combined capacity of the parallel combination of two capacitors is four times their combined capacity when connected in series. This means that
1. Their capacities are equal
2. Their capacities are 1 μF and 2 μF
3. Their capacities are 0.5 μF and 1 μF
4. Their capacities are infinite
In the given network capacitance, C1 = 10 μF, C2 = 5 μF and C3 = 4 μF. What is the resultant capacitance between A and B
1. 2.2 μF
2. 3.2 μF
3. 1.2 μF
4. 4.7 μF
The equivalent capacitance between \(A\) and \(B\) is:
1. | \(2~\mu\text{F}\) | 2. | \(3~\mu\text{F}\) |
3. | \(5~\mu\text{F}\) | 4. | \(0.5~\mu\text{F}\) |
In the circuit shown in figure, each capacitor has a capacity of 3 μF. The equivalent capacity between A and B is
1.
2. 3 μF
3. 6 μF
4. 5 μF
In the figure, three capacitors each of capacitance 6 pF are connected in series. The total capacitance of the combination will be
1. 9 × 10–12 F
2. 6 × 10–12 F
3. 3 × 10–12 F
4. 2 × 10–12 F
Equivalent capacitance between A and B is
1. 8 μF
2. 6 μF
3. 26 μF
4. 10/3 μF
In the figure a capacitor is filled with dielectrics. The resultant capacitance is
1.
2.
3.
4. None of these