The resultant capacitance across 300 v battery in the figure shown is equal to

1. 1 μF

2. 31120 μF

3. 2 μF

4. 12031μF

Subtopic:  Combination of Capacitors |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of the resulting system 

1. increases by a factor of 4

2.decreases by a factor of 2

3. remain the same 

4. increases by a factor of 2

Subtopic:  Energy stored in Capacitor |
 64%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The diagrams below show regions of equipotentials.

  

A positive charge is moved from \(\mathrm A\) to \(\mathrm B\) in each diagram. Then:
1. the maximum work is required to move \(q\) in figure(iii).
2. in all four cases, the work done is the same.
3. the minimum work is required to move \(q\) in the figure(i).
4. the maximum work is required to move \(q\) in figure(ii).
Subtopic:  Equipotential Surfaces |
 90%
From NCERT
NEET - 2017
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electric dipole is place at an angle of \(30^{\circ}\) with an electric field intensity \(2\times10^{5}~\text{N/C}\). It experiences a torque equal to \(4~\text{Nm}\). The charge on the dipole, if the dipole length is \(2~\text{cm}\), is: 

1. \(8~\text{mC}\) 2. \(2~\text{mC}\)
3. \(5~\text{mC}\) 4. \(7~\mu\text{C}\)

Subtopic:  Energy of Dipole in an External Field |
 86%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A parallel-plate capacitor of area A, plate separation d, and capacitance C is filled with four dielectric materials having dielectric constants k1,k2,k3 and k4 as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by

       

1. k=k1+k2+k3+3k4

2. k=23k1+k2+k3+2k4

3. 1k=32k1+k2+k3+12k4

4. 1k=1k1+1k2+1k3+32k4

Subtopic:  Dielectrics in Capacitors |
 69%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A capacitor of \(2~\mu\text{F}\) is charged as shown in the figure. When the switch \(S\) is turned to position \(2\), the percentage of its stored energy dissipated is:
         

1. \(20\%\) 2. \(75\%\)
3. \(80\%\) 4. \(0\%\)
Subtopic:  Energy stored in Capacitor |
 64%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A parallel plate air capacitor of capacitance \(C\) is connected to a cell of emf \(V\) and then disconnected from it. A dielectric slab of dielectric constant \(K\), which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect?
1. The potential difference between the plates decreases \(K\) times
2. The energy stored in the capacitor decreases \(K\) times
3. The change in energy stored is \({1 \over 2} CV^{2}(\frac{1}{K}-1)\)
4. The charge on the capacitor is not conserved

Subtopic:  Energy stored in Capacitor |
 71%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If potential (in volts) in a region is expressed as V(x,y,z)=6xy-y+2yz, the electric field (in N/C) at point (1,1,0) is       


(1)-(3i^+5j^+3k^)

(2)-(6i^+5j^+2k^)

(3)-(2i^+3j^+k^)

(4)-(6i^+9j^+k^

Subtopic:  Relation between Field & Potential |
 83%
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

Two thin dielectric slabs of dielectric constants K1&K2 (K1<K2) are inserted between plates of a parallel capacitor, as shown in the figure. The variation of electric field E between the plates with distance d as measured from plate P is correctly shown by  

1.

2. 

3.

4.

Subtopic:  Dielectrics in Capacitors |
 74%
From NCERT
NEET - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A conducting sphere of radius R is given a charge Q. The electric potential and field at the centre of the sphere respectively are

(a) zero and Q/4πεoR

(b)Q/4πεoR and zero

(c)Q/4πεoR and Q/4πεoR2

(d)Both are zero

Subtopic:  Electric Potential |
 82%
From NCERT
NEET - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch