Cyclotron cannot be used to accelerate
1. Electrons
2. Neutrons
3. Positive ions
4. Both (1) and (2)
Two particles A and B of masses and respectively and having the same type of charge are moving in a plane. A uniform magnetic field exists perpendicular to this plane. The speeds of the particles are and respectively, and the trajectories are as shown in the figure. Then
1.
2.
3.
4.
Magnetic field due to a ring having n turns at a distance x on its axis is proportional to (if r = radius of ring) :
1.
2.
3.
4.
A and B are two concentric circular conductors of centre O and carrying currents and as shown in the adjacent figure. If ratio of their radii is 1 : 2 and ratio of the flux densities at O due to A and B is 1 : 3, then the value of is
1. 2.
3. 4.
PQRS is a square loop made of uniform conducting wire the current enters the loop at P and leaves at S. Then the magnetic field will be
1. Maximum at the centre of the loop
2. Zero at the centre of the loop
3. Zero at all points inside the loop
4. Zero at all points outside of the loop
An electric current passes through a long straight wire. At a distance 5 cm from the wire, the magnetic field is B. The field at 20 cm from the wire would be :
1.
2.
3.
4.
The dimension of the magnetic field intensity B is:
1.
2.
3.
4.
1. | \(\dfrac{\mu _{0}i}{2\pi a}\) | 2. | \(\dfrac{\mu _{0}i\sqrt2}{\pi a}\) |
3. | \(\dfrac{2\sqrt2\mu _{0}i}{\pi a}\) | 4. | \(\dfrac{\mu _{0}i}{\sqrt2\pi a}\) |
A beam of ions with velocity enters normally into a uniform magnetic field of tesla. If the specific charge of the ion is C/kg , then the radius of the circular path described will be :
1. 0.10 m 2. 0.16 m
3. 0.20 m 4. 0.25 m
If the direction of the initial velocity of the charged particle is perpendicular to the magnetic field, then the orbit will be
or
The path executed by a charged particle whose motion is perpendicular to magnetic field is :
1. A straight line
2. An ellipse
3. A circle
4. A helix