1. | \(\frac{2 G m M}{3 R} \) | 2. | \(\frac{G m M}{2 R} \) |
3. | \(\frac{G m M}{3 R} \) | 4. | \( \frac{5 G m M}{6 R}\) |
1. | \(9.8 ~\text{ms}^{-2}\) | 2. | \(4.9 ~\text{ms}^{-2}\) |
3. | \(3.92 ~\text{ms}^{-2}\) | 4. | \(19.6~\text{ms}^{-2}\) |
1. | \(\dfrac{\pi RG}{12g}\) | 2. | \(\dfrac{3\pi R}{4gG}\) |
3. | \(\dfrac{3g}{4\pi RG}\) | 4. | \(\dfrac{4\pi G}{3gR}\) |
1. | \(11.2\sqrt2~\text{km/s}\) | 2. | zero |
3. | \(11.2~\text{km/s}\) | 4. | \(11.2\sqrt3~\text{km/s}\) |
1. | \(+\dfrac K2\) | 2. | \(-\dfrac{K}{2}\) |
3. | \(-\dfrac{K}{4}\) | 4. | \(+\dfrac K4\)
|
Two planets orbit a star in circular paths with radii \(R\) and \(4R,\) respectively. At a specific time, the two planets and the star are aligned in a straight line. If the orbital period of the planet closest to the star is \(T,\) what is the minimum time after which the star and the planets will again be aligned in a straight line?
1. | \((4)^2T\) | 2. | \((4)^{\frac13}T\) |
3. | \(2T\) | 4. | \(8T\) |