In an LR-circuit, the time constant is that time in which current grows from zero to the value (where I0 is the steady-state current) 

1. 0.63 I0

2. 0.50 I0

3. 0.37 I0

4. I0

Subtopic:  LR circuit |
 75%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

In the figure magnetic energy stored in the coil is 

1. Zero

2. Infinite

3. 25 joules

4. None of the above

Subtopic:  Self - Inductance |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A copper rod of length l is rotated about one end perpendicular to the magnetic field B with constant angular velocity ω. The induced e.m.f. between the two ends is 

1. 12Bωl212Bωl2

2. 34Bωl234Bωl2

3. Bωl2Bωl2

4. 2Bωl22Bωl2

Subtopic:  Motional emf |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two conducting circular loops of radii R1R1 and R2R2 are placed in the same plane with their centres coinciding. If R1>>R2R1>>R2, the mutual inductance MM between them will be directly proportional to:

1. R1R2R1R2 2. R2R1R2R1
3. R21R2R21R2 4. R22R1R22R1
Subtopic:  Mutual Inductance |
 64%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A thin semicircular conducting ring of radius RR is falling with its plane vertical in a horizontal magnetic induction BB. At the position MNQMNQ, the speed of the ring is vv and the potential difference developed across the ring is:

          

1.  Zero
2. BvπR2/2BvπR2/2 and MM is at the higher potential 
3. 2RBv2RBv and MM is at the higher potential
4. 2RBv2RBv and QQ  is at the higher potential
Subtopic:  Motional emf |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider the situation shown in the figure. The wire AB is sliding on the fixed rails with a constant velocity. If the wire AB is replaced by semicircular wire, the magnitude of the induced current will 

1. Increase

2. Remain the same

3. Decrease

4. Increase or decrease depending on whether the semicircle bulges towards the resistance or away from it

Subtopic:  Motional emf |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A circular loop of radius R carrying current I lies in the x-y plane with its centre at the origin. The total magnetic flux through the x-y plane is 

1. Directly proportional to I

2. Directly proportional to R

3. Directly proportional to R2

4. Zero

Subtopic:  Magnetic Flux |
 54%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A small square loop of wire of side l is placed inside a large square loop of wire of side L (L > l). The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to 

1. l / L

2. l2 / L

3. L/l

4. L2/l

Subtopic:  Mutual Inductance |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A uniform but time-varying magnetic field B(t) exists in a circular region of radius a and is directed into the plane of the paper, as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region 

1. Is zero

2. Decreases as 1r1r

3. Increases as r

4. Decreases as 1r21r2

Subtopic:  Faraday's Law & Lenz Law |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A coil of wire having finite inductance and resistance has a conducting ring placed coaxially within it. The coil is connected to a battery at time t = 0 so that a time-dependent current I1(t) starts flowing through the coil. If I2(t) is the current induced in the ring and B(t) is the magnetic field at the axis of the coil due to I1(t), then as a function of time (t > 0), the product I2 (t) B(t

1. Increases with time

2. Decreases with time

3. Does not vary with time

4. Passes through a maximum

Subtopic:  LR circuit |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints