A cube of side l is placed in a uniform field E, where E=Ei^. The net electric flux through the cube is

(1) Zero

(2) l2E

(3) 4l2E

(4) 6l2E

Subtopic:  Gauss's Law |
 75%
Level 2: 60%+
Hints
Links

Eight dipoles of charges of magnitude \((e)\) are placed inside a cube. The total electric flux coming out of the cube will be: 
1. \(\frac{8e}{\epsilon _{0}}\)
2. \(\frac{16e}{\epsilon _{0}}\)
3. \(\frac{e}{\epsilon _{0}}\)
4. zero

Subtopic:  Electric Dipole |
 76%
Level 2: 60%+
PMT - 1998
Hints
Links

A charge \(q\) is placed at the centre of the open end of the cylindrical vessel. The flux of the electric field through the surface of the vessel is:
1. \(0\)
2. \(\dfrac{q}{\varepsilon_0}\)
3. \(\dfrac{q}{2\varepsilon_0}\)
4. \(\dfrac{2q}{\varepsilon_0}\)

Subtopic:  Gauss's Law |
 51%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

According to Gauss’ Theorem, electric field of an infinitely long straight wire is proportional to 

(1) r

(2) 1r2

(3) 1r3

(4) 1r

Subtopic:  Electric Field | Gauss's Law |
 74%
Level 2: 60%+
Hints
Links

Electric charge is uniformly distributed along a long straight wire of radius \(1\) mm. The charge per cm length of the wire is \(Q\) coulomb. Another cylindrical surface of radius \(50\) cm and length \(1\) m symmetrically encloses the wire as shown in the figure. The total electric flux passing through the cylindrical surface is:

                

1. \(\dfrac{Q}{\varepsilon _{0}}\) 2. \(\dfrac{100Q}{\varepsilon _{0}}\)
3. \(\dfrac{10Q}{\pi\varepsilon _{0}}\) 4. \(\dfrac{100Q}{\pi\varepsilon _{0}}\)
Subtopic:  Gauss's Law |
 65%
Level 2: 60%+
Hints
Links

The S.I. unit of electric flux is 

(1) Weber

(2) Newton per coulomb

(3) Volt × metre

(4) Joule per coulomb

Subtopic:  Gauss's Law |
 53%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

\(q_1, q_2,q_3~\text{and}~q_4\) are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to the Gauss’s law?


1. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3\right) \cdot d \vec{A}=\frac{q_1+q_2+q_3}{2 \varepsilon_0}\)
2. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3+\vec{E}_4\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3\right)}{\varepsilon_0}\)
3. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3+q_4\right)}{\varepsilon_0}\)
4. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3+\vec{E}_4\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3+q_4\right)}{\varepsilon_0}\)

Subtopic:  Gauss's Law |
 77%
Level 2: 60%+
Hints
Links

If the electric flux entering and leaving an enclosed surface respectively is φ1 and φ2, the electric charge inside the surface will be: 

(1) (φ1+φ2)ε0

(2) (φ2φ1)ε0

(3) (φ1+φ2)/ε0

(4) (φ2φ1)/ε0 

Subtopic:  Gauss's Law |
 64%
Level 2: 60%+
Hints
Links

Shown below is a distribution of charges. The flux of electric field due to these charges through the surface S is 

(1) 3q/ε0

(2) 2q/ε0

(3) q/ε0 

(4) Zero

Subtopic:  Gauss's Law |
 83%
Level 1: 80%+
AIIMS - 2003
Hints
Links

advertisementadvertisement

Consider the charge configuration and spherical Gaussian surface as shown in the figure. While calculating the flux of the electric field over the spherical surface, the electric field will be due to: 

(1) q2 only

(2) Only the positive charges

(3) All the charges

(4) +q1 and – q1 only

Subtopic:  Gauss's Law |
 62%
Level 2: 60%+
Hints
Links