If you are provided three resistances 2 Ω, 3 Ω and 6 Ω. How will you connect them so as to obtain the equivalent resistance of 4 Ω
1.
2.
3.
4. None of these
The equivalent resistance and potential difference between A and B for the circuit is respectively
1. 4 Ω, 8 V
2. 8 Ω, 4 V
3. 2 Ω, 2 V
4. 16 Ω, 8 V
Five equal resistances each of resistance R are connected as shown in the figure. A battery of V volts is connected between A and B. The current flowing in AFCEB will be
1.
2.
3.
4.
For the network shown in the figure the value of the current i is
1.
2.
3.
4.
When a wire of uniform cross-section a, length l and resistance R is bent into a complete circle, the resistance between any two of diametrically opposite points will be :
1.
2.
3. 4R
4.
In the circuit given E = 6.0 V, R1 = 100 ohms, R2 = R3 = 50 ohms, R4 = 75 ohms. The equivalent resistance of the circuit, in ohms, is
1. 11.875
2. 26.31
3. 118.75
4. None of these
By using only two resistance coils-singly, in series, or in parallel one should be able to obtain resistances of 3, 4, 12, and 16 ohms. The separate resistances of the coil are :
1. 3 and 4
2. 4 and 12
3. 12 and 16
4. 16 and 3
In the adjoining circuit, the battery E1 has an e.m.f. of 12 volts and zero internal resistance while the battery E has an e.m.f. of 2 volts. If the galvanometer G reads zero, then the value of the resistance X in ohm is
1. 10
2. 100
3. 500
4. 200
The magnitude and direction of the current in the circuit shown will be
1. A from a to b through e
2. A from b to a through e
3. 1A from b to a through e
4. 1A from a to b through e
The e.m.f. of a cell is E volts and internal resistance is r ohm. The resistance in external circuit is also r ohm. The p.d. across the cell will be
1. E/2
2. 2E
3. 4E
4. E/4