1. | \(\dfrac{1}{{R}^{6}}\) | 2. | \(\dfrac{1}{{R}^{2}}\) |
3. | \(\dfrac{1}{{R}^{3}}\) | 4. | \(\dfrac{1}{{R}^{4}}\) |
Twelve point charges each of charge \(q~\text C\) are placed at the circumference of a circle of radius \(r~\text{m}\) with equal angular spacing. If one of the charges is removed, the net electric field (in \(\text{N/C}\)) at the centre of the circle is:
(\(\varepsilon_0\text- \)permittivity of free space)
1. | \(\dfrac{13q}{4\pi \varepsilon_0r^2}\) | 2. | zero |
3. | \(\dfrac{q}{4\pi \varepsilon_0r^2}\) | 4. | \(\dfrac{12q}{4\pi \varepsilon_0r^2}\) |
1. | the electric field inside the surface is necessarily uniform. |
2. | the number of flux lines entering the surface must be equal to the number of flux lines leaving it. |
3. | the magnitude of electric field on the surface is constant. |
4. | all the charges must necessarily be inside the surface. |
According to Gauss's law in electrostatics, the electric flux through a closed surface depends on:
1. | the area of the surface |
2. | the quantity of charges enclosed by the surface |
3. | the shape of the surface |
4. | the volume enclosed by the surface |
1. | \(\dfrac{Q}{\varepsilon_0}\times10^{-6}\) | 2. | \(\dfrac{2Q}{3\varepsilon_0}\times10^{-3}\) |
3. | \(\dfrac{Q}{6\varepsilon_0}\times10^{-3}\) | 4. | \(\dfrac{Q}{6\varepsilon_0}\times10^{-6} \) |
A dipole is placed in an electric field as shown. In which direction will it move?
1. | towards the left as its potential energy will decrease. |
2. | towards the right as its potential energy will increase. |
3. | towards the left as its potential energy will increase. |
4. | towards the right as its potential energy will decrease. |
Polar molecules are the molecules:
1. | that acquires a dipole moment only when the magnetic field is absent. |
2. | has a permanent electric dipole moment. |
3. | has zero dipole moment. |
4. | that acquire a dipole moment only in the presence of an electric field due to displacement of charges. |
A cylinder of radius r and length l is placed in an uniform electric field parallel to the axis of the cylinder. The total flux for the surface of the cylinder is given by-
1. zero
2.
3. E
4. 2E