For a plane electromagnetic wave propagating in the \(x\)-direction, which one of the following combinations gives the correct possible directions for the electric field \((E)\) and magnetic field \((B)\) respectively?
1. \(\hat{j}+\hat{k},~-\hat{j}-\hat{k}\)
2. \(-\hat{j}+\hat{k},~-\hat{j}+\hat{k}\)
3. \(\hat{j}+\hat{k},~\hat{j}+\hat{k}\)
4. \(-\hat{j}+\hat{k},~-\hat{j}-\hat{k}\)

Subtopic:  Properties of EM Waves |
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A capacitor of capacitance \(C\) is connected across an AC source of voltage \(V\), given by;
\(V=V_0 \sin \omega t\)
The displacement current between the plates of the capacitor would then be given by:
1. \( I_d=\dfrac{V_0}{\omega C} \sin \omega t \)
2. \( I_d=V_0 \omega C \sin \omega t \)
3. \( I_d=V_0 \omega C \cos \omega t \)
4. \( I_d=\dfrac{V_0}{\omega C} \cos \omega t\)

Subtopic:  Displacement Current |
 57%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Assume a bulb of efficiency \(2.5\%\) as a point source. The peak values of the electric field and magnetic field produced by the radiation coming from a \(100~\text{W}\) bulb at a distance of \(3~\text{m}\) are respectively:

1. \( 2.5 ~\text{V/m}, ~2.2 \times 10^{-8} ~\text{T} \)
2. \( 3.6 ~\text{V/m}, ~ 3.6 ~\text{T} \)
3. \( 4.07~\text{V/m},~ 1.4 \times 10^{-8} ~\text{T}\)
4. \( 4.2 ~\text{V/m}, ~3.4 \times 10^{-6}~\text{T}\)
Subtopic:  Properties of EM Waves |
 53%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Light with an energy flux of \(18~\text{W/cm}^{2}\) falls on a non-reflecting surface at normal incidence. If the surface has an area of \(20~\text{cm}^{2}\), what is the average force exerted on the surface during a \(30\) minute time span?
1. \(2.1\times10^{-6}~\text{N}\)
2. \(1.8\times10^{-6}~\text{N}\)
3. \(1.2\times10^{-6}~\text{N}\)
4. \(2.1\times10^{-5}~\text{N}\)

Subtopic:  Properties of EM Waves |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The magnetic field in a plane electromagnetic wave is given by;
\(B_y=\left(2 \times 10^{-7}\right) \sin \left(0.5 \times 10^3 {x}+1.5 \times 10^{11} {t}\right)~\text{T}\).
The expression for the electric field is:
1. \(E_z=60 \sin \left(0.5 \times 10^3 x+1.5 \times 10^{11} t\right) ~\text{V/m} \)
2. \(E_z=60 \sin \left(1.5 \times 10^3 x+0.5 \times 10^{11} t\right) ~\text{V/m} \)
3. \(E_z=55 \sin \left(0.5 \times 10^3 x+1.5 \times 10^{11} t\right) ~\text{V/m} \)
4. \(E_z=55 \sin \left(1.5 \times 10^3 x+0.5 \times 10^{11} t\right) ~\text{V/m} \)
Subtopic:  Properties of EM Waves |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The magnetic field in a plane electromagnetic wave is given by \({B}=\left(2 \times 10^{-7}\right)\sin \left(0.5 \times 10^3 {x}+1.5 \times 10^{11} {t}\right )~\text{T}\). The wavelength and frequency of the wave are respectively:
1. \( 2.16~\text{cm}, 24.1~\text{GHz} \) 2. \( 0.29~\text{cm}, 13.7~\text{GHz} \)
3. \( 3.23 ~\text{cm}, 20.0~\text{GHz} \) 4. \( 1.26~\text{cm}, 23.9~\text{GHz}\)
Subtopic:  Properties of EM Waves |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A plane electromagnetic wave of frequency \(25 ~\text{MHz}\) travels in free space along the \(x\text-\)direction. At a particular point in space and time, \(\vec{E_{0}}=6.3 \hat{j}~\text{V/m}.\) What is \(\vec{B_{0}}\) at this point?
1. \(2.1\times 10^{-8} \hat{k}~\text{T}\)
2. \(1.2\times10^{-8} \hat{k}~\text{T}\)
3. \(2.1\times10^{-8} \hat{j}~\text{T}\)
4. \(1.2\times10^{-8} \hat{j}~\text{T}\)

Subtopic:  Properties of EM Waves |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A parallel plate capacitor with circular plates of radius \(1~\text m\) has a capacitance of \(1~\text{nF}.\) At \(t = 0,\) it is connected for charging in series with a resistor \(R = 1 ~\text{M}{\Omega}\) across a \(2~\text V\) battery (as shown in the figure). The magnetic field at a point \(P,\) halfway between the centre and the periphery of the plates, after \(t = 10^{–3}~\text s \) is: 
(the charge on the capacitor at the time \(t\) is \(q (t) = CV[1 – e^{(–t/ 𝜏 )}],\) where the time constant \(\tau\) is equal to \(CR.\)

  

1. \(0 . 74 \times 10^{- 13}~\text T\)
2. \(0 . 67 \times 10^{- 13}~\text T\)
3. \(0 . 74 \times 10^{- 12}~\text T\)
4. \(0 . 67 \times 10^{- 12}~\text T\)

Subtopic:  Maxwell's Equations |
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links

The magnetic field in a plane electromagnetic wave is given by:
\(B_y = 2\times10^{-7} ~\text{sin}\left(\pi \times10^{3}x+3\pi\times10^{11}t\right )\text{T}\)
The wavelength is:
1. \(\pi\times 10^{3}~\text{m}\)
2. \(2\times10^{-3}~\text{m}\)
3. \(2\times10^{3}~\text{m}\)
4. \(\pi\times 10^{-3}~\text{m}\)

Subtopic:  Properties of EM Waves |
 83%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The EM wave with the shortest wavelength among the following is:
1. Ultraviolet rays 
2. \(X\)-rays
3. Gamma-rays
4. Microwaves  
Subtopic:  Electromagnetic Spectrum |
 78%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch