1. | \(379\) J | 2. | \(357\) J |
3. | \(457\) J | 4. | \(374\) J |
Match Column I and Column II and choose the correct match from the given choices.
Column I | Column II | ||
(A) | Root mean square speed of gas molecules | (P) | \(\dfrac13nm\bar v^2\) |
(B) | The pressure exerted by an ideal gas | (Q) | \( \sqrt{\dfrac{3 R T}{M}} \) |
(C) | The average kinetic energy of a molecule | (R) | \( \dfrac{5}{2} R T \) |
(D) | The total internal energy of a mole of a diatomic gas | (S) | \(\dfrac32k_BT\) |
(A) | (B) | (C) | (D) | |
1. | (Q) | (P) | (S) | (R) |
2. | (R) | (Q) | (P) | (S) |
3. | (R) | (P) | (S) | (Q) |
4. | (Q) | (R) | (S) | (P) |
When a molecule (or an elastic ball) hits a ( massive) wall, it rebounds with the same speed. When a ball hits a massive bat held firmly, the same thing happens. However, when the bat is moving towards the ball, the ball rebounds at a different speed. Does the ball move faster or slower?
1. faster
2. slower
3. The speed of the ball does not change
4. none of these
Uranium has two isotopes of masses \(235 \) and \(238\) units. If both are present in Uranium hexafluoride gas, which would have the larger average speed?
1. \(^{235} \mathrm{U} \mathrm{F}_{6}\)
2. \({}^{238} \mathrm{U} \mathrm{F}_{6}\)
3. Both will have the same average speed.
4. Data insufficient
A flask contains argon and chlorine in the ratio of \(2:1\) by mass. The temperature of the mixture is \(27^{\circ}~\mathrm{C}\). The ratio of root mean square speed \(v_{rms}\) of the molecules of the two gases is: (Atomic mass of argon = \(39.9\) u; Molecular mass of chlorine = \(70.9\) u)
1. \(2.33\)
2. \(1.33\)
3. \(0.5\)
4. \(2\)
A flask contains argon and chlorine in the ratio of \(2:1\) by mass. The temperature of the mixture is \(27~^\circ\mathrm{C}\). The ratio of average kinetic energy per molecule of the molecules of the two gases is:
(Atomic mass of argon = \(39.9~\text{u}\); Molecular mass of chlorine = \(70.9~\text{u}\))
1. \(1:2\)
2. \(2:1\)
3. \(1:1\)
4. \(1:2\)
1. | \(0.397\) | 2. | \(0.937\) |
3. | \(0.947\) | 4. | \(1\) |
A vessel contains two nonreactive gases: neon (monatomic) and oxygen (diatomic). The ratio of their partial pressures is \(3:2.\) The ratio of the number of molecules is:
(Atomic mass of Ne \(=20.2\) u, molecular mass of O2 \(=32.0\) u)
1. \(2:3\)
2. \(3:2\)
3. \(1:3\)
4. \(3:1\)