If a proton and anti-proton come close to each other and annihilate, how much energy will be released:

1. 1.5×10-10 J           

2. 3×10-10 J         

3. 4.5×10-10 J         

4. None of these

Subtopic:  Mass-Energy Equivalent |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The stable nucleus that has a radius half of the radius of \(\mathrm{Fe}^{56}\) is:
1. \(\mathrm{Li}^7\)
2. \(\mathrm{Na}^{21}\)
3. \(\mathrm{S}^{16}\)
4. \(\mathrm{Ca}^{40}\)

Subtopic:  Nucleus |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The mass density of a nucleus varies with mass number A as 

1. A2

2. A 

3. Constant 

4. 1A

Subtopic:  Nuclear Binding Energy |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Energy released in the fission of a single U23592 nucleus is 200 MeV. The fission rate of a U23592 filled reactor operating at a power level of 5 W is 

1. 1.56×10-10 s-1 

2. 1.56×1011 s-1

3. 1.56×10-16 s-1   

4. 1.56×10-17 s-1

Subtopic:  Nuclear Energy |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In one \(\alpha \text-\) and \(2\beta^{-} \text-\)emissions:
1. mass number reduced by \(2\)
2. mass number reduces by \(6\)
3. atomic number is reduced by \(2\)
4. atomic number remains unchanged
Subtopic:  Types of Decay |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Which of the following is used as a moderator in nuclear reactors? 

1. Plutonium 

2. Cadmium 

3. Heavy water

4. Uranium 

Subtopic:  Nuclear Energy |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Heavy water is used as a moderator in a nuclear reactor. The function of the moderator is 

1. to control energy released in the reactor

2. to absorb neutrons and stop the chain reaction

3. to cool the reactor

4. to slow down the neutrons to thermal energies

Subtopic:  Nuclear Energy |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The binding energy per nucleon of deuterium and helium atom is \(1.1\) MeV and \(7.0\) MeV. If two deuterium nuclei fuse to form a helium atom, the energy released is:
1. \(19.2\) MeV
2. \(23.6\) MeV
3. \(26.9\) MeV 
4. \(13.9\) MeV
Subtopic:  Nuclear Binding Energy |
 76%
From NCERT
PMT - 2001
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a fission reaction,
\(^{236}_{92}\mathrm{U}\rightarrow ~^{117}\mathrm{X}~+~^{117}\mathrm{Y}~+~^1_0n~+~^1_0n,\) the binding energy per nucleon of \(\mathrm{X}\) and \(\mathrm{Y}\) is \(8.5\) MeV whereas that of \(^{236}\mathrm{U}\) is \(7.6\) MeV. The total energy liberated will be about:
1. \(2000\) MeV
2. \(200\) MeV
3. \(2\) MeV 
4. \(1\) keV

Subtopic:  Nuclear Binding Energy |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A nuclear decay is expressed as:
\(_{6}^{11}\mathrm{C}\rightarrow _{5}^{11}\mathrm{B}+\beta^{+}+\mathrm{X}\)
Then the unknown particle \(X\) is:
1. neutron 
2. antineutrino
3. proton 
4. neutrino

Subtopic:  Types of Decay |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch