An \(\alpha\text-\)particle moves in a circular path of radius \(0.83\) cm in the presence of a magnetic field of \(0.25 ~\text{Wb/m}^2\). The de-Broglie wavelength associated with the particle will be:
1. \(1~\mathring{A}\) 2. \(0.1~\mathring{A}\)
3. \(10~\mathring{A}\) 4. \(0.01~\mathring{A}\)

Subtopic:  De-broglie Wavelength |
 57%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the momentum of an electron is changed by \(p\), then the de-Broglie wavelength associated with it changes by \(0.5\%\). What is the initial momentum of the electron?
1. \(200p\)
2. \(400p\)
3. \(\frac{p}{200}\)
4. \(100p\)

Subtopic:  De-broglie Wavelength |
 61%
From NCERT
NEET - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface having a work function of \(5.01\) eV when ultraviolet light of \(200\) nm falls on it is:
1. \(2.4\) V 2. \(-1.2\) V
3. \(-2.4\) V 4. \(1.2\) V
Subtopic:  Einstein's Photoelectric Equation |
 57%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When monochromatic radiation of intensity \(I\) falls on a metal surface, the number of photoelectrons and their maximum kinetic energy are \(N\) and \(T\) respectively. If the intensity of radiation is \(2I\) what is the number of emitted electrons and their maximum kinetic energy?
1. \(N\) and \(2T\) 2. \(2N\) and \(T\)
3. \(2N\) and \(2T\) 4. \(N\) and \(T\)
Subtopic:  Photoelectric Effect: Experiment |
 82%
From NCERT
NEET - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A helium-neon laser produces monochromatic light of a wavelength of \(667\) nm. The power emitted is \(9\) mW. The average number of photons arriving per second on average at a target irradiated by this beam is:
1. \(9\times 10^{17}\)
2. \(3\times 10^{16}\)
3. \(9\times 10^{15}\)
4. \(3\times 10^{19}\)

Subtopic:  Particle Nature of Light |
 79%
From NCERT
NEET - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle of mass \(1\) mg has the same wavelength as an electron moving with a velocity of \(3\times 10^{6}~\text{m/s}\). What will be the velocity of the particle? (mass of electrons = \(9.1\times 10^{-31}\) kg)
1. \(2.7 \times 10^{-18} ~\text{ms}^{-1}\)
2. \(9 \times 10^{-2} ~\text{ms}^{-1}\)
3. \(3 \times 10^{-31}~\text{ms}^{-1}\)
4. \(2.7 \times 10^{-21} ~\text{ms}^{-1}\)
Subtopic:  De-broglie Wavelength |
 51%
From NCERT
NEET - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Waves are associated with matter only:

1. When it is stationary.
2. When it is in motion with the velocity of light only.
3. When it is in motion with any velocity.
4. None of the above.

Subtopic:  De-broglie Wavelength |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle which has zero rest mass and non-zero energy and momentum must travel with a speed:
1. Equal to \(c\), the speed of light in vacuum.
2. Greater than \(c\).
3. Less than \(c\).
4. Tending to infinity.
Subtopic:  De-broglie Wavelength |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the de-Broglie wavelengths for a proton and an alpha-particle are equal, then the ratio of their velocities will be:
1. \(4:1\)
2. \(2:1\)
3. \(1:2\)
4. \(1:4\)

Subtopic:  De-broglie Wavelength |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

How much energy should be added to an electron to reduce its de-Broglie wavelength from \(10^{-10}\) m to \(0.5\times10^{-10}\) m?
1. Four times the initial energy.
2. Thrice the initial energy.
3. Equal to the initial energy.
4. Twice the initial energy.

Subtopic:  De-broglie Wavelength |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch