Three capacitors connected in series have a capacitance of \(9\) pF each. The potential difference across each capacitor if the combination is connected to a \(120\) V supply is:
1. \(10\) V
2. \(20\) V
3. \(30\) V
4. \(40\) V
In a parallel plate capacitor with air between the plates, each plate has an area of \(6\times10^{-3}~\text{m}^2\), and the distance between the plates is \(3~\text{mm}\). The capacitance of the capacitor is:
1. \(16.12~\text{pF}\)
2. \(17.71~\text{pF}\)
3. \(15.01~\text{pF}\)
4. \(11.32~\text{pF}\)
What is the area of the plates of a \(2~\text{F}\) parallel plate capacitor, given that the separation between the plates is \(0.5~\text{cm}\)?
1. \(1100~\text{km}^2\)
2. \(1130~\text{km}^2\)
3. \(1110~\text{km}^2\)
4. \(1105~\text{km}^2\)
A spherical capacitor has an inner sphere of radius \(12\) cm and an outer sphere of radius \(13\) cm. The outer sphere is earthed and the inner sphere is given a charge of \(2.5\) C. The space between the concentric spheres is filled with a liquid of dielectric constant \(32.\) The capacitance of the capacitor is:
1. \(4.0\times 10^{-9}\) F
2. \(4.5\times 10^{-9}\) F
3. \(5.5\times 10^{-9}\) F
4. \(3.3\times 10^{-9}\) F
A cylindrical capacitor has two co-axial cylinders of length \(15~\text{cm}\) and radii \(1.5~\text{cm}\) and \(1.4~\text{cm}\). The outer cylinder is earthed and the inner cylinder is given a charge of \(3.5~\mu \text{C}\). The capacitance of the system is:
1. \(3.4 \times10^{-10}~\text{F}\)
2. \(1.2 \times10^{-10}~\text{F}\)
3. \(4.8 \times10^{-9}~\text{F}\)
4. \(2.5 \times10^{-9}~\text{F}\)