Eight equally charged tiny drops are combined to form a big drop. If the potential on each drop is \(10\) V, then the potential of the big drop will be:
1. \(40\) V 2. \(10\) V
3. \(30\) V 4. \(20\) V

Subtopic:  Electric Potential |
 74%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A bullet of mass \(2\) g is having a charge of \(2\) µC. Through what potential difference must it be accelerated, starting from rest, to acquire a speed of \(10\) m/s?
1. \(50\) kV
2. \(5\) V
3. \(50\) V
4. \(5\) kV

Subtopic:  Electric Potential |
 76%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An electric dipole has the magnitude of its charges as \(q\) and its dipole moment is \(p\). It is placed in a uniform electric field \(E\). If its dipole moment is along the direction of the field, the force on it and its potential energy are respectively:
1. \(q\cdot E\) and \(p\cdot E \)
2. zero and minimum
3. \(q\cdot E\) and maximum
4. \(2q\cdot E\) and minimum 
Subtopic:  Energy of Dipole in an External Field |
 77%
From NCERT
AIPMT - 2004
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The energy and capacity of a charged parallel plate capacitor are \(E\) and \(C\) respectively. If a dielectric slab of \(E_r=6\) is inserted in it, then the energy and capacity become:
(Assuming the charge on plates remains constant)
1. \(6 E,6 C\) 2. \( E,C\)
3. \(\frac{E}{6},6C\) 4. \(E,6C\)
Subtopic:  Energy stored in Capacitor |
 75%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A capacitor of capacity \(C_1\) is charged up to \(V\) volt and then connected to an uncharged capacitor \(C_2\). Then final P.D. across each will be:
1. \(\frac{C_{2} V}{C_{1} + C_{2}}\)
2. \(\frac{C_{1} V}{C_{1} + C_{2}}\)
3. \(\left(1 + \frac{C_{2}}{C_{1}}\right)\)
4. \(\left(1 - \frac{C_{2}}{C_{1}} \right) V\)

Subtopic:  Combination of Capacitors |
 79%
From NCERT
AIPMT - 2002
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Three capacitors each of capacity \(4\) µF are to be connected in such a way that the effective capacitance is \(6\) µF. This can be done by:

1.  connecting all of them in a series.
2. connecting them in parallel.
3. connecting two in series and one in parallel.
4. connecting two in parallel and one in series.

Subtopic:  Combination of Capacitors |
 89%
From NCERT
AIPMT - 2003
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The effective capacity of the network between terminals \(\mathrm{A}\) and \(\mathrm{B}\) is:

1. \(6~\mu\text{F}~\) 2. \(20~\mu\text{F} ~\)
3. \(3~\mu\text{F}~\) 4. \(10~\mu\text{F}\)
Subtopic:  Combination of Capacitors |
 90%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two parallel metal plates having charges \(+Q\) and \(-Q\), face each other at a certain distance between them. If the plates are now dipped in the kerosene oil tank, the electric field between the plates will:
1. increase. 2. decrease.
3. remain the same. 4. become zero.
Subtopic:  Dielectrics in Capacitors |
 77%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The electric potential \(V\) at any point \((x,y,z)\), all in meters in space is given by \(V= 4x^2~\text{volt}\). The electric field at the point \((1,0,2)\) in volt/meter, is:
1. \(8\) along the negative \(X\text-\)axis
2. \(8\) along the positive \(X\text-\)axis
3. \(16\) along the negative \(X\text-\)axis
4. \(16\) along the positive \(X\text-\)axis
Subtopic:  Relation between Field & Potential |
 77%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Three charges, each \(+q\), are placed at the corners of an equilateral triangle \(ABC\) of sides \(BC\), \(AC\), and \(AB\). \(D\) and \(E\) are the mid-points of \(BC\) and \(CA\). The work done in taking a charge \(Q\) from \(D\) to \(E\) is:

        

1. \(\frac{3qQ}{4\pi \varepsilon_0 a}\) 2. \(\frac{3qQ}{8\pi \varepsilon_0 a}\)
3. \(\frac{qQ}{4\pi \varepsilon_0 a}\) 4. \(\text{zero}\)
Subtopic:  Electric Potential |
 83%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch