What is the area of the plates of a \(2~\text{F}\) parallel plate capacitor, given that the separation between the plates is \(0.5~\text{cm}\)?
1. \(1100~\text{km}^2\)
2. \(1130~\text{km}^2\)
3. \(1110~\text{km}^2\)
4. \(1105~\text{km}^2\)

Subtopic:  Capacitance |
 72%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If \(50~\text{J}\) of work must be done to move an electric charge of \(2~\text{C}\) from a point where the potential is \(-10\) volt to another point where the potential is \(\mathrm{V}\) volt, then the value of \(\mathrm{V}\) is:
1. \(5\) volt
2. \(-15\) volt
3. \(+15\) volt
4. \(+10\) volt

Subtopic:  Electric Potential |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The increasing order of the electrostatic potential energies for the given system of charges is given by:

     

1. a = d < b < c 2. b = d < c < a
3. b = c < a < d 4. c < a < b < d
Subtopic:  Electric Potential |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A short electric dipole has a dipole moment of \(16 \times 10^{-9} ~\text{C-}\text{m}\). The electric potential due to the dipole at a point at a distance of \(0.6~\text{m}\) from the centre of the dipole situated on a line making an angle of \(60^{\circ}\) with the dipole axis is: \(\left( \frac{1}{4\pi \varepsilon_0}= 9\times 10^{9}~\text{N-m}^2/\text{C}^2\right)\)
1. \(200~\text{V}\)
2. \(400~\text{V}\)
3. zero
4. \(50~\text{V}\)

Subtopic:  Energy of Dipole in an External Field |
 66%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The work done to move a charge along an equipotential from \(A\) to \(B\):
1. can not be defined as \(-\int_{A}^{B} { \vec E\cdot \vec{dl}}\)
2. must be defined as \(-\int_{A}^{B} {\vec E\cdot \vec{dl}}\)
3. is zero
4. can have a non-zero value.
Subtopic:  Equipotential Surfaces |
 91%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In a region of constant potential:
a. the electric field is uniform
b. the electric field is zero
c. there can be no charge inside the region
d. the electric field shall necessarily change if a charge is placed outside the region

Choose the correct statement(s): 
1. (b) and (c)
2. (a) and (c)
3. (b) and (d)
4. (c) and (d)

Subtopic:  Relation between Field & Potential |
 55%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A parallel plate capacitor is made of two dielectric blocks in series. One of the blocks has thickness \(d_1\) and dielectric constant \(K_1\) and the other has thickness \(d_2\) and dielectric constant \(K_2\), as shown in the figure. This arrangement can be thought of as a dielectric slab of thickness \(d= d_1+d_2\) and effective dielectric constant \(K\). The \(K\) is:  

                                 

1. \(\frac{{K}_{1} {d}_{1}+{K}_{2} {d}_{2}}{{d}_{1}+{d}_{1}}\) 2. \(\frac{{K}_{1} {d}_{1}+{K}_{2} {d}_{2}}{{K}_{1}+{K}_{2}}\)
3. \(\frac{{K}_{1} {K}_{2}\left({d}_{1}+{d}_{2}\right)}{{K}_{1} {d}_{2}+{K}_{2} {d}_{1}}\) 4. \(\frac{2 {K}_{1} {K}_{2}}{{K}_{1}+{K}_{2}}\)
Subtopic:  Dielectrics in Capacitors |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider a uniform electric field in the \(z\text-\)direction. The potential is constant:
a. in all space
b. for any \(x\) for a given \(z\)
c. for any \(y\) for a given \(z\)
d. on the \(x\text-y\) plane for a given \(z\)
1. (a), (b), (c) 2. (a), (c), (d)
3. (b), (c), (d) 4. (c), (d)
Subtopic:  Equipotential Surfaces |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A parallel plate air capacitor is charged to potential difference \(V\). After disconnecting the battery, the distance between the plates of the capacitor is increased using an insulating handle. As a result the potential difference between the plates:
1. decreases.
2. increases.
3. becomes zero.
4. does not change.

Subtopic:  Capacitance |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Some equipotential surfaces are shown in figure. The electric field at points \(A\), \(B\) and \(C\) are respectively:

1. \(1~\text{V/cm}, \frac{1}{2} ~\text{V/cm}, 2~\text{V/cm} \text { (all along +ve X-axis) }\)
2. \(1~\text{V/cm}, \frac{1}{2} ~\text{V/cm}, 2 ~\text{V/cm} \text { (all along -ve X-axis) }\)
3. \(\frac{1}{2} ~\text{V/cm}, 1~\text{V/cm}, 2 ~\text{V/cm} \text { (all along +ve X-axis) }\)
4. \(\frac{1}{2}~\text{V/cm}, 1~\text{V/cm}, 2 ~\text{V/cm} \text { (all along -ve X-axis) }\)
Subtopic:  Equipotential Surfaces |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch