A particle moves from position null to \(\left(11\hat i + 11\hat j + 15\hat k \right)\) due to a uniform force of \(\left(4\hat i + \hat j + 3\hat k\right)\)N. If the displacement is in m, then the work done will be: (Given: \(W=\overrightarrow {F}.\overrightarrow {S}\))
1. \(100~\text{J}\)
2. \(200~\text{J}\)
3. \(300~\text{J}\)
4. \(250~\text{J}\)

Subtopic:  Scalar Product |
 89%
Level 1: 80%+
Hints
Links

The dot product of two mutual perpendicular vector is:

1. \(0\)

2. \(1\)

3. \(\infty\)

4. None of the above

Subtopic:  Scalar Product |
 88%
Level 1: 80%+
Hints
Links

If \(\overrightarrow {A} = 2\hat{i} + \hat{j} - \hat{k},\) \(\overrightarrow {B} = \hat{i} + 2\hat{j} + 3\hat{k},\) and \(\overrightarrow {C} = 6 \hat{i} - 2\hat{j} - 6\hat{k},\) then the angle between \(\left(\overrightarrow {A} + \overrightarrow{B}\right)\) and \(\overrightarrow{C}\) will be:
1. \(30^{\circ}\)
2. \(45^{\circ}\)
3. \(60^{\circ}\)
4. \(90^{\circ}\)

Subtopic:  Scalar Product |
 77%
Level 2: 60%+
Hints
Links

advertisementadvertisement

The magnitude of the resultant of two vectors of magnitude \(3\) units and \(4\) units is \(1\) unit. What is the value of their dot product?

1. \(-12\) units

2. \(-7\) units

3. \(-1\) unit

4. \(0\)

Subtopic:  Scalar Product |
 73%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

If vector \(\overrightarrow{A}   =   \cos \omega t \hat{i}   +   \sin \omega t \hat{j}\) and \(\overrightarrow{B} =\cos \frac{\omega t}{2} \hat{i} + \sin \frac{\omega t}{2} \hat{j}\) are functions of time, then the value of \(t\) at which they are orthogonal to each other will be:
1. \(t = \frac{\pi}{2\omega}\)
2. \(t = \frac{\pi}{\omega}\)
3. \(t=0\)
4. \(t = \frac{\pi}{4\omega}\)

Subtopic:  Scalar Product |
 67%
Level 2: 60%+
Hints

The vector sum of two forces is perpendicular to their vector difference. In that case, the forces:

1. are not equal to each other in magnitude.
2. cannot be predicted.
3. are equal to each other.
4. are equal to each other in magnitude.
Subtopic:  Scalar Product |
 66%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The unit vector perpendicular to vectors \(\overrightarrow a= \left(3 \hat{i}+\hat{j}\right)  \) and \(\overrightarrow B = \left(2\hat i - \hat j -5\hat k\right)\) is:
1. \(\pm \frac{\left(\right. \hat{i} - 3 \hat{j} + \hat{k} \left.\right)}{\sqrt{11}}\)
2. \(\pm \frac{\left(3 \hat{i} + \hat{j}\right)}{\sqrt{11}}\)
3. \(\pm \frac{\left(\right. 2 \hat{i} - \hat{j} - 5 \hat{k} \left.\right)}{\sqrt{30}}\)
4. None of these

Subtopic:  Scalar Product |
 55%
Level 3: 35%-60%
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The component of vector \(\overrightarrow{A} = 3 \hat{i} + \hat{j} + \hat{k}\) along the direction of \(\hat{i} - \hat{j}\) is:
1. \(\sqrt{2}\)
2. \(2\)
3. \(\sqrt{3}\)
4. \(3\)

Subtopic:  Scalar Product |
 63%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

If \(\overrightarrow {A}\) and \(\overrightarrow{B}\) are two vectors inclined to each other at an angle \(\theta,\) then the component of \(\overrightarrow {A}\) perpendicular to \(\overrightarrow {B}\) and lying in the plane containing \(\overrightarrow {A}\) and \(\overrightarrow {B}\) will be:
1. \(\frac{\overrightarrow {A} \overrightarrow{.B}}{B^{2}} \overrightarrow{B}\)
2. \(\overrightarrow{A}   -   \frac{\overrightarrow{A} \overrightarrow{.B}}{B^{2}} \overrightarrow{B}\)
3. \(\overrightarrow{A} -\overrightarrow{B}\)
4. \(\overrightarrow{A} + \overrightarrow{B}\)

Subtopic:  Scalar Product |
 51%
Level 3: 35%-60%
Hints
Links

advertisementadvertisement

\(\overrightarrow{A}\) and \(\overrightarrow B\) are two vectors and \(\theta\) is the angle between them. If \(\left|\overrightarrow A\times \overrightarrow B\right|= \sqrt{3}\left(\overrightarrow A\cdot \overrightarrow B\right),\) then the value of \(\theta\) will be:

1. \(60^{\circ}\) 2. \(45^{\circ}\)
3. \(30^{\circ}\) 4. \(90^{\circ}\)
Subtopic:  Scalar Product | Vector Product |
 80%
Level 1: 80%+
AIPMT - 2007
Hints
Links