Emf of the following cell at 298 K in V is x × 10–2 . The cell is Zn|Zn2+ (0.1 M) || Ag+ (0.01 M) | Ag. The value of x is-
(Rounded off to the nearest integer)
\(\begin{aligned} & \text { Given; } \mathrm{E}_{\mathrm{Zn}^{2+}}^{\mathrm{o}} / \mathrm{Zn}=-0.76 \mathrm{~V} \\ & \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}=+0.80 \mathrm{~V} ; \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \end{aligned}\)
1. 157
2. 147
3. 144
4. 154
For the given cell :
change in Gibbs energy is negative, if:
1.
2.
3.
4.
The reduction potential of hydrogen half-cell will be negative if:
1. P(H2) = 1atm and [H+] = 2.0 M
2. P(H2) = 1 atm and [H+] = 1.0 M
3. P(H2) = 2 atm and [H+] = 1.0 M
4. P(H2) = 2 atm and [H+] = 2.0 M
For the following cell with hydrogen electrodes at two different pressures p1 and p2
Pt(H2) | H+(aq) |Pt (H2)
p1 1M p2
emf is given by:
1. \(\frac{R T}{F} \log _{e} \frac{P_{1}}{p_{2}}\)
2. \(\frac{R T}{2F} \log _{e} \frac{P_{1}}{p_{2}}\)
3. \(\frac{R T}{F} \log _{e} \frac{P_{2}}{p_{1}}\)
4. \(\frac{R T}{2F} \log _{e} \frac{P_{2}}{p_{1}}\)
| 1. | increasing conc. of \(\mathrm{Cu}^{2+}\), keeping conc. of \(\mathrm{Ti}^{+}\) constant. |
| 2. | increasing conc. of \(\mathrm{Ti}^{+}\), keeping conc. of \(\mathrm{Cu}^{2+}\) constant. |
| 3. | increasing conc. of both \( \mathrm{Ti}^{+}\) and \( \mathrm{Cu}^{2+}\). |
| 4. | decreasing conc. of both \(\mathrm{Cu}^{2+}\) and \(\mathrm{Ti}^{+}\). |