During the propagation of electromagnetic waves in a medium:

1. Electric energy density is half of the magnetic energy density
2. Electric energy density is equal to the magnetic energy density
3. Both electric and magnetic energy densities are zero
4. Electric energy density is double of the magnetic energy density
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

A red LED emits light at \(0.1\) watt uniformly around it. The amplitude of the electric field of the light at a distance of \(1~\text{m}\) from the diode is:
1. \(1.73~\text{V/m}\)
2. \(2.45~\text{V/m}\)
3. \(5.48~\text{V/m}\)
4. \(7.75~\text{V/m}\)

Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

An electromagnetic wave traveling in the \(x\text-\)direction has the frequency of \(2\times 10^{14}~\text{Hz}\) and electric field amplitude of \(27~\text{Vm}^{-1}.\) From the options given below, which one describes the magnetic field for this wave?
 
1. \(\begin{aligned} & \vec{B}(x, t)=\left(9 \times 10^{-8}~\text T\right) \hat{j} \sin \left[1.5 \times 10^{-6} x-2 \times 10^{14} t\right] \end{aligned}\)
2. \(\begin{aligned} & \vec{B}(x, t)=\left(9 \times 10^{-8}~\text{T}\right) \hat{i} \sin \left[2 \pi\left(1.5 \times 10^{-8} x-2 \times 10^{14} t\right)\right] \end{aligned}\)
3. \(\begin{aligned} & \vec{B}(x, t)=\left(9 \times 10^{-8}~\text{T}\right) \hat{{k}} \sin \left[2 \pi\left(1.5 \times 10^{-6}{x}-2 \times 10^{14}{t}\right)\right] \end{aligned}\)
4.  \(\begin{aligned} & \vec{B}(x, t)=\left(3 \times 10^{-8}~\text{T}\right) \hat{j} \sin \left[2 \pi\left(1.5 \times 10^{-8} x-2 \times 10^{14} t\right)\right] \end{aligned}\)
 
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints

advertisementadvertisement

For plane electromagnetic waves propagating in the \(z\) direction, which one of the following combinations gives the correct possible direction for \({\vec{E}}\) and \({\vec{B}}\)  field respectively?
1. \({(2 \hat{i}+3 \hat{j})}\) and \({(\hat{i}+2 \hat{j})}\)
2. \({(-2 \hat{i}-3 \hat{j})}\) and \({(3\hat{i}-2 \hat{j})}\)
3. \({(3 \hat{i}+4 \hat{j})}\) and \({(4\hat{i}-3 \hat{j})}\)
4. \({(\hat{i}+2 \hat{j})}\) and \({(2\hat{i}-\hat{j})}\)
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

The magnetic field in a plane electromagnetic wave is given by \(\vec B=B_0\sin(K x+\omega t)\hat j~\text T.\) The expression for the corresponding electric field will be:
(where \(c\) is the speed of light)
1. \(\vec E=\frac{B_0}{c}\sin (kx+\omega t)\hat k~\text{V/m}\)
2. \(\vec E=-B_0c\sin (kx+\omega t)\hat k~\text{V/m}\)
3. \(\vec E=B_0c\sin (kx+\omega t)\hat k~\text{V/m}\)
4. \(\vec E=B_0c\sin (kx+\omega t)\hat k~\text{V/m}\)
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints

The electric field component of a monochromatic radiation is given by \(\vec E=2~E_0\hat i\cos{kz}\cos\Omega t.\) 
Its magnetic field \(\vec B\) is given by:
1. \(\dfrac{2~E_0}{c}~\hat j\cos kz\cos \omega t\)
2. \(\dfrac{2~E_0}{c}~\hat j\sin kz\cos \omega t\)
3. \(\dfrac{2~E_0}{c}~\hat j\sin kz\sin \omega t\)
4. \(-\dfrac{2~E_0}{c}~\hat j\sin kz \sin \omega t\)
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints

advertisementadvertisement

An EM wave from air enters a medium. The electric fields are \(\overrightarrow{{E}}_1={E}_{01} \hat{{x}} \cos \left[2 \pi {\nu}\left(\frac{{z}}{{c}}-{t}\right)\right] \) in air and \(\overrightarrow{{E}}_2={E}_{02} \hat{{x}} \cos {k}(2 {z}-{ct})]\) in medium, where the wave number \(k\) and frequency \(\nu\) refer to their values in air. The medium is non-magnetic. If \(\epsilon_{r_1}\) and \(\epsilon_{r_2}\) refer to relative permittivities of air and medium respectively, which of the following options is correct?
1. \( \frac{\epsilon_{r_1}}{\epsilon_{r_2}}=4 \)
2. \( \frac{\epsilon_{r_1}}{\epsilon_{r_2}}=2 \)
3. \( \frac{\epsilon_{r_1}}{\epsilon_{r_2}}=\frac{1}{4} \)
4. \( \frac{\epsilon_{r_1}}{\epsilon_{r_2}}=\frac{1}{2}\)

Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

A monochromatic beam of light has a frequency \(v=\frac{3}{2\pi}\times10 ^{12}~\text{Hz}\) and is propagating along the direction \(\frac{i+j}{\sqrt{2}}\) It is polarized along the \(\hat{k}\) direction. The acceptable form of the magnetic field is:
1. \(\frac{E_0}{C}\bigg(\frac{\hat{i}-\hat{j}}{\sqrt2}\bigg) \cos\bigg[ 10^4 \frac{(\hat{i}-\hat{j})}{\sqrt2}.\overrightarrow{r} - (3 \times10 ^{12})t \bigg]\)
2. \(\frac{E_0}{C}\hat{k}\cos\bigg[ 10^4 \frac{(\hat{i}+\hat{j})}{\sqrt2}.\overrightarrow{r} +(3 \times10 ^{12})t \bigg]\)
3. \(\frac{E_0}{C}\bigg(\frac{\hat{i}-\hat{j}}{\sqrt2}\bigg)\cos\bigg[ 10^4 \frac{(\hat{i}+\hat{j})}{\sqrt2}.\overrightarrow{r} + (3 \times10 ^{12})t \bigg]\)
4. \(\frac{E_0}{C}\bigg(\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt3}\bigg)\cos\bigg[ 10^4 \frac{(\hat{i}+\hat{j})}{\sqrt2}.\overrightarrow{r} + (3 \times10 ^{12})t \bigg]\)
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints

A plane electromagnetic wave of wavelength \(\lambda\) has an intensity \(I.\) It is propagating along the positive \(y\text{-direction}.\) The allowed expressions for the electric and magnetic fields are given by:
1. \(\vec{E} = \sqrt{\frac{2I}{\varepsilon_0c}}\cos\bigg[ \frac{2\pi}{\lambda}(y-ct)\bigg]\hat{k;}~~~ \vec{B} = +\frac{1}{c}E\hat{i}\)
2. \(\vec{E} = \sqrt{\frac{I}{\varepsilon_0c}}\cos\bigg[ \frac{2\pi}{\lambda}(y-ct)\bigg]\hat{k;}~~~\vec{B} = +\frac{1}{c}E\hat{i}\)
3. \(\vec{E} = \sqrt{\frac{2I}{\varepsilon_0c}}\cos\bigg[ \frac{2\pi}{\lambda}(y+ct)\bigg]\hat{k;}~~~\vec{B} = \frac{1}{c}E\hat{i}\)
4. \(\vec{E} = \sqrt{\frac{1}{\varepsilon_0c}}\cos\bigg[ \frac{2\pi}{\lambda}(y-ct)\bigg]\hat{i;}~~~\vec{B} = +\frac{1}{c}E\hat{i}\)
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints

advertisementadvertisement

The magnetic field of an electromagnetic wave is given by:
\(\vec{B}=1.6 \times 10^{-6} ~\text{cos} \left(2 \times 10^{-7} z+6 \times 10^{15} t\right)(2 \hat{i}+\hat{j})~ {\text{Wb/m}^2}\)
The associated electric field will be:

1. \( \vec{E}=4.8 \times 10^2 ~\text{cos} \left(2 \times 10^7 z+6 \times 10^{15} t\right)(-\hat{i}+2 \hat{j})~ {\text{V/m}}\)
2. \(\vec{E}=4.8 \times 10^2 ~\text{cos} \left(2 \times 10^7 z-6 \times 10^{15} t\right)(2 \hat{i}+2 \hat{j})~{\text{V/m}}\)
3. \( \vec{E}=4.8 \times 10^2 ~\text{cos} \left(2 \times 10^7 z-6 \times 10^{15} t\right)(\hat{i}-2 \hat{j}) ~{\text{V/m}}\)
4. \( \vec{E}=4.8 \times 10^2 ~\text{cos} \left(2 \times 10^7 z-6 \times 10^{15} t\right)(-2 \hat{i}+\hat{j}) ~{\text{V/m}}\)
Subtopic:  Properties of EM Waves |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.