A body is obliquely projected from the horizontal ground. The magnitude of gravity's power delivered during its motion from the ground to the topmost point is:

1. Constant

2. Increases continuously

3. Decreases continuously

4. May increase or decrease depending on the angle of projection

Subtopic:  Power |
 55%
Level 3: 35%-60%
Hints
Links

In the given figure, a man pulls the mass \(m\) with the help of a rope. The work done by the man against gravity when mass is lifted by \(0.5~\text{m}\) is
\(\left(g= 10~\text{m/s}^2 \right)\)

      
1. \(50~\text{J}\)
2. \(100~\text{J}\)
3. \(25~\text{J}\)
4. Zero

Subtopic:  Elastic Potential Energy |
 66%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A particle is suspended by a light rod of length l. The minimum speed at which the particle should be projected, so that it moves in a vertical circle, is:

1. \(3 \sqrt{g l} \) 2. \(\sqrt{2 g l} \)
3. \(2 \sqrt{g l} \) 4. \(\sqrt{5 g l}\)
Subtopic:  Conservation of Mechanical Energy |
Level 3: 35%-60%
Hints

advertisementadvertisement

According to the work-energy theorem, the change in kinetic energy of a body is equal to work done by:

1.  Non-conservative force on the particle

2.  Conservative force on the particle

3.  External force on the particle

4.  All the forces on the particle

Subtopic:  Work Energy Theorem |
 80%
Level 1: 80%+
Hints
Links

A block is carried slowly up an inclined plane. If \(W_f\) is work done by the friction, \(W_N\) is work done by the reaction force, \(W_g\) is work done by the gravitational force, and \(W_{ex}\) is the work done by an external force, then choose the correct relation(s):
1. \(W _N +   W _f   +   W _g   +   W _{ex}   =   0\)
2. \(W _N   =   0\)
3. \(   W _f   +   W _{ex}   =    - W _g\)
4. All of these

Subtopic:  Work Energy Theorem |
 72%
Level 2: 60%+
Hints
Links

The position of a particle \((x)\) varies with time \((t)\) as \(x = (t - 2)^2\), where \(x\) is in meters and \(t\) is in seconds. Calculate the work done during \(t=0\) to \(t=4\) s if the mass of the particle is \(100~\text{g}.\)
1. \(0.4~\text{J}\)
2. \(0.2~\text{J}\)
3. \(0.8~\text{J}\)
4. zero

Subtopic:  Work done by constant force |
 65%
Level 2: 60%+
Hints
Links

advertisementadvertisement

A particle of mass m is moving in a circular path with a speed v = kt, where k is constant and t is time. The instantaneous power delivered to the particle is: 

1. Zero 2. mkt
3. mk2t 4. mk2t2

Subtopic:  Power |
 69%
Level 2: 60%+
Hints
Links

A position-dependent force; \(F=6+8x-3x^2\)acts on a small body of mass \(3\) kg, displacing it from \(x=0\) to \(x=2\) m. The work done in joule is:
1. \(20\) 
2. \(40\) 
3. \(10\) 
4. \(12\)
 

Subtopic:  Work Done by Variable Force |
 85%
Level 1: 80%+
Hints
Links

A car of mass 100 kg and traveling at 20 m/s collides with a truck weighing 1 tonne traveling at 9 km/h in the same direction. The car bounces back at a speed of 5 m/s. The speed of the truck after the impact will be:

1.  11.5 m/s

2.  5 m/s

3.  18 m/s

4.  12 m/s

Subtopic:  Collisions |
 71%
Level 2: 60%+
Hints
Links

advertisementadvertisement

Which of the following remains unchanged (for the system) during an inelastic collision?

1. Mechanical energy 2. Kinetic energy
3. Momentum 4. All of the above.
Subtopic:  Collisions |
 78%
Level 2: 60%+
Hints
Links