A small square loop of wire of side 'l' is placed inside a large square loop of side 'L' (Ll). If the loops are coplanar and their centres coincide, the mutual inductance of the system is directly proportional to:

1. L/l

2. l/L

3. L2/l

4. l2/L

Subtopic:  Mutual Inductance |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two coils have a mutual inductance of 5 mH. The current changes in the first coil according to the equation \(I=I_{0}cos\omega t,\) where \(I_{0}=10~A\) and ω = 100π rad/s. The maximum value of e.m.f. induced in the second coil is:

1. 5π Volt

2. 2π Volt

3. 4π Volt

4. π Volt

Subtopic:  Mutual Inductance |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Eddy currents are used in:

1. Induction furnace

2. Electromagnetic brakes

3. Speedometers

4. All of these

Subtopic:  Eddy Current |
 93%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The magnetic flux linked with a coil varies with time as \(\phi = 2t^2-6t+5,\) where \(\phi \) is in Weber and \(t\) is in seconds. The induced current is zero at:
1. \(t=0\)
2. \(t= 1.5~\text{s}\)
3. \(t=3~\text{s}\)
4. \(t=5~\text{s}\)

Subtopic:  Faraday's Law & Lenz Law |
 90%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If a current is passed through a circular loop of radius \(R\) then magnetic flux through a coplanar square loop of side \(l\) as shown in the figure \((l<<R)\) is:

 

1. \(\frac{\mu_{0} l}{2} \frac{R^{2}}{l}\)

2. \(\frac{\mu_{0} I l^{2}}{2 R}\)

3. \(\frac{\mu_{0} l \pi R^{2}}{2 l}\)

4. \(\frac{\mu_{0} \pi R^{2} I}{l}\)

Subtopic:  Magnetic Flux |
 82%
From NCERT
Please attempt this question first.
Hints
Links
Please attempt this question first.

The radius of a loop as shown in the figure is \(10~\text{cm}.\) If the magnetic field is uniform and has a value \(10^{-2}~ \text{T},\) then the flux through the loop will be:
 

1. \(2 \pi \times 10^{-2}~\text{Wb}\) 2. \(3 \pi \times 10^{-4}~\text{Wb}\)
3. \(5 \pi \times 10^{-5}~\text{Wb}\) 4. \(5 \pi \times 10^{-4}~\text{Wb}\)
Subtopic:  Magnetic Flux |
 76%
From NCERT
Please attempt this question first.
Hints
Links
Please attempt this question first.

advertisementadvertisement

The coefficient of mutual inductance between two coils depends upon:

1. medium between coils
2. separation between coils
3. orientation of coils
4. All of these

Subtopic:  Mutual Inductance |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A solenoid of inductance L and resistance R is connected to a battery of e.m.f. E. Maximum value of magnetic energy stored in the inductor is:

1. E22R
2. E2L2R2
3. E2LR 
4. E2L2R

Subtopic:  LR circuit |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A rod having length \(l\) and resistance \(R_0\) is moving with speed \(v\) as shown in the figure. The current through the rod is:
               

1. \(\frac{B l v}{\frac{R_{1} R_{2}}{R_{1} + R_{2}} + R_{0}}\)

2. \(\frac{Blv}{\left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{o}}\right)^{2}}\)

3. \(\frac{B l v}{R_{1} + R_{2} + R_{0}}\)

4. \(\frac{B l v}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{0}}}\)

Subtopic:  Motional emf |
 65%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A bar magnet is released along the vertical axis of the conducting coil. The acceleration of the bar magnet is:

1. greater than \(g\). 2. less than \(g\).
3. equal to \(g\). 4. zero.
Subtopic:  Faraday's Law & Lenz Law |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch