A conductor ABOCD moves along its bisector with a velocity of \(1\) m/s through a perpendicular magnetic field of \(1~\text{wb/m}^2\), as shown in fig. If all the four sides are of \(1\) m length each, then the induced emf between points A and D is:
        
1. \(0\)

2. \(1.41\) volt

3. \(0.71\) volt

4. None of the above

Subtopic:  Motional emf |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A wire cd of length \(l\) and mass \(m\) is sliding without friction on conducting rails \(ax\) and \(by\) as shown. The vertical rails are connected to each other with a resistance \(R\) between \(a\) and \(b\). A uniform magnetic field \(B\) is applied perpendicular to the plane \(abcd\) such that \(cd\) moves with a constant velocity of:

1. \({mgR \over Bl}\) 2. \({mgR \over B^2l^2}\)
3. \({mgR \over B^3l^3}\) 4. \({mgR \over B^2l}\)
Subtopic:  Motional emf |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A conducting rod \(AC\) of length \(4l\) is rotated about point \(O\) in a uniform magnetic field \(\vec {B}\) directed into the paper. If \(AO = l\) and \(OC = 3l\), then:

   
1. \(V_{A} - V_{O} = \frac{B \omega l^{2}}{2}\)
2. \(V_{O} - V_{C} = \frac{7}{2} B \omega l^{2}\)
3. \(V_{A} - V_{C} = 4 B \omega l^{2}\)
4. \(V_{C} - V_{O} = \frac{9}{2} B \omega l^{2}\)

Subtopic:  Motional emf |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The graph gives the magnitude \(B(t)\) of a uniform magnetic field that exists throughout a conducting loop, perpendicular to the plane of the loop. Rank the five regions of the graph according to the magnitude of the emf induced in the loop, greatest first:

1. \(b > (d = e) < (a = c)\)
2. \(b > (d = e) > (a = c)\)
3. \(b < d < e < c < a\)
4. \(b > (a = c) > (d = e)\)

Subtopic:  Faraday's Law & Lenz Law |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A square loop of side \(5\) cm enters a magnetic field with \(1\) cms-1. If the front edge enters the magnetic field at \(t=0\), then which graph best depicts emf?

            

1.  2.
3. 4.
Subtopic:  Motional emf |
 59%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil having number of turns \(N\) and cross-sectional area \(A\) is rotated in a uniform magnetic field \(B\) with an angular velocity \(\omega\). The maximum value of the emf induced in it is:
1. \(\frac{NBA}{\omega}\)
2. \(NBAω\)
3. \(\frac{NBA}{\omega^{2}}\)
4. \(NBAω^{2}\)

Subtopic:  Faraday's Law & Lenz Law |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A long solenoid has \(1000\) turns. When a current of \(4\) A flows through it, the magnetic flux linked with each turn of the solenoid is \(4\times 10^{-3}\) Wb. The self-inductance of the solenoid is:
1. \(3\) H
2. \(2\) H
3. \(1\) H
4. \(4\) H

Subtopic:  Self - Inductance |
 88%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A wire loop is rotated in a magnetic field. The frequency of change of direction of the induced e.m.f. is:

1. Twice per revolution 2. Four times per revolution
3. Six times per revolution 4. Once per revolution
Subtopic:  Faraday's Law & Lenz Law |
 73%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil has \(500\) turns and the flux through the coil is \(\phi=3t^{2} +4t+9\) milliweber. The magnitude of induced emf between the ends of the coil at \(t = 5~\text{s}\) is:
1. \(34\) millivolt
2. \(17\) volt
3. \(17\) millivolt
4. \(34\) volt

Subtopic:  Faraday's Law & Lenz Law |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The current \(i\) in an inductance coil varies with time \(t\) according to the graph shown in the figure. Which one of the following plots shows the variation of voltage in the coil with time?

1.  2.
3. 4.
Subtopic:  Self - Inductance |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch