A coil is wound of a frame of rectangular cross-section. If the linear dimensions of the frame are doubled and the number of turns per unit length of the coil remains the same, then the self inductance increases by a factor of:

1. 6 2. 12
3. 8 4. 16

Subtopic:  Self - Inductance |
 74%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

I:  A small magnet takes a longer time in falling into a hollow metallic tube without touching the wall.
II: There is an opposition to motion due to the production of eddy currents in a metallic tube.

Choose the correct option for the above statements:

1. Both I and II are true and II is the correct explanation for I.
2. Both I and II are true and II is not the correct explanation for I.
3. I is true but II is false.
4. I is false but II is true.
Subtopic:  Eddy Current |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A rectangular, a square, a circular, and an elliptical loop, all in the \((x\text-y)\) plane, are moving out of a uniform magnetic field with a constant velocity, \(\vec{v}= v\hat{i}.\) The magnetic field is directed along the negative \(z\text-\)axis direction. The induced emf, during the passage of these loops out of the field region, will not remain constant for:
1. the rectangular, circular, and elliptical loops.
2. the circular and the elliptical loops.
3. only the elliptical loop.
4. any of the four loops.
Subtopic:  Motional emf |
 72%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A conducting circular loop is placed in a uniform magnetic field of \(0.04\) T with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at a rate of \(2\) mm/s. The induced emf in the loop when the radius is \(2\) cm is:
1. \(3.2\pi ~\mu \text{V}\)

2. \(4.8\pi ~\mu\text{V}\)

3. \(0.8\pi ~\mu \text{V}\)

4. \(1.6\pi ~\mu \text{V}\)

Subtopic:  Faraday's Law & Lenz Law |
 69%
From NCERT
AIPMT - 2009
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil of self-inductance \(L\) is connected in series with a bulb \(\mathrm{B}\) and an AC source. The brightness of the bulb decreases when:

1. number of turns in the coil is reduced.
2. a capacitance of reactance \(X_C = X_L\) is included in the same circuit.
3. an iron rod is inserted in the coil.
4. frequency of the AC source is decreased.
Subtopic:  Self - Inductance |
 67%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil has \(1000\) turns and \(500\) cm2 as its area. The plane of the coil is placed at right angles to a magnetic field of \(2\times 10^{-5}\) \(\text{Wb/m}^2\) The coil is rotated through  \(180^{\circ}\) in \(0.2\) seconds. The average emf induced in the coil, in milli-volts, is:
1. \(5\) 2. \(10\)
3. \(15\) 4. \(20\)
Subtopic:  Faraday's Law & Lenz Law |
 58%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The current in a coil varies with time \(t\) as \(I= 3 t^{2} +2t\). If the inductance of coil be \(10\) mH, the value of induced emf at \(t=2~\text{s}\) will be:
1. \(0.14~\text{V}\)
2. \(0.12~\text{V}\)
3. \(0.11~\text{V}\)
4. \(0.13~\text{V}\)

Subtopic:  Faraday's Law & Lenz Law |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A coil of a mean area of \(500~\text{cm}^2\) and \(1000\) turns is held perpendicular to a uniform field of \(0.4\) Gauss. The coil is turned through \(180^{\circ}\) in \(\frac{1}{10}\) seconds. The average induced emf is:
1. \(0.04\) V 2. \(0.4\) V
3. \(4\) V 4. \(0.004\) V
Subtopic:  Faraday's Law & Lenz Law |
 60%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The network shown in figure is a part of a complete circuit. If at a certain instant, the current 'i' is 10 A and is increasing at the rate of 4×103 A/sec, then VA-VB is:

  

1. 6 V 2. -6 V
3. 10 V 4. -10 V
Subtopic:  LR circuit |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A coil having an area \(A_0\) is placed in a magnetic field which changes from \(B_0~\text{to}~4B_0\) in time interval \(t\). The average EMF induced in the coil will be:
1. \(\frac{3 A_{0} B_{0}}{t}\)
2. \(\frac{4 A_{0} B_{0}}{t}\)
3. \(\frac{3 B_{0}}{A_{0} t}\)
4. \(\frac{4 B_{0}}{A_{0} t}\)
Subtopic:  Faraday's Law & Lenz Law |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch